
Contents

Acknowledgements & Copyright v

Foreword vi

Preface vii

Authors’ Profiles viii

Convention ix

Abbreviations x

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Competitive Programming . 1
1.2 Tips to be Competitive . 2

1.2.1 Tip 1: Quickly Identify Problem Types . 4
1.2.2 Tip 2: Do Algorithm Analysis . 5
1.2.3 Tip 3: Master Programming Languages . 7
1.2.4 Tip 4: Master the Art of Testing Code . 9
1.2.5 Tip 5: Practice and More Practice . 10

1.3 Getting Started: Ad Hoc Problems . 11
1.4 Chapter Notes . 13

2 Data Structures and Libraries 14
2.1 Data Structures . 14
2.2 Data Structures with Built-in Libraries � . 15

2.2.1 Linear Data Structures . 15
2.2.2 Non-Linear Data Structures (IOI syllabus excludes Hash Table) 16

2.3 Data Structures with Our-Own Libraries � . 18
2.3.1 Graph . 18
2.3.2 Union-Find Disjoint Sets . 19
2.3.3 Segment Tree . 22

2.4 Chapter Notes . 25

3 Problem Solving Paradigms 26
3.1 Complete Search � . 26

3.1.1 Examples . 27
3.1.2 Tips . 29

3.2 Divide and Conquer � . 32
3.2.1 Interesting Usages of Binary Search . 32

ii

CONTENTS c© Steven & Felix, NUS

3.3 Greedy � . 35
3.3.1 Classical Example . 35
3.3.2 Non Classical Example . 35
3.3.3 Remarks About Greedy Algorithm in Programming Contests 37

3.4 Dynamic Programming � . 40
3.4.1 DP Illustration . 40
3.4.2 Several Classical DP Examples . 45
3.4.3 Non Classical Examples . 49
3.4.4 Remarks About Dynamic Programming in Programming Contests 54

3.5 Chapter Notes . 57

4 Graph 58
4.1 Overview and Motivation . 58
4.2 Depth First Search . 58
4.3 Breadth First Search . 67
4.4 Kruskal’s . 70
4.5 Dijkstra’s . 74
4.6 Bellman Ford’s . 75
4.7 Floyd Warshall’s . 77
4.8 Edmonds Karp’s (excluded in IOI syllabus) . 81
4.9 Special Graphs . 85

4.9.1 Tree . 86
4.9.2 Directed Acyclic Graph . 87
4.9.3 Bipartite Graph (excluded in IOI syllabus) 89

4.10 Chapter Notes . 92

5 Mathematics 93
5.1 Overview and Motivation . 93
5.2 Ad Hoc Mathematics Problems . 94
5.3 Number Theory . 94

5.3.1 Prime Numbers . 94
5.3.2 Greatest Common Divisor (GCD) & Least Common Multiple (LCM) 98
5.3.3 Euler’s Totient (Phi) Function . 98
5.3.4 Extended Euclid: Solving Linear Diophantine Equation 99
5.3.5 Modulo Arithmetic . 100
5.3.6 Fibonacci Numbers . 101
5.3.7 Factorial . 101

5.4 Java BigInteger Class . 102
5.4.1 Basic Features . 102
5.4.2 Bonus Features . 103

5.5 Miscellaneous Mathematics Problems . 105
5.5.1 Combinatorics . 105
5.5.2 Cycle-Finding . 106
5.5.3 Existing (or Fictional) Sequences and Number Systems 107
5.5.4 Probability Theory (excluded in IOI syllabus) 108
5.5.5 Linear Algebra (excluded in IOI syllabus) . 108

5.6 Chapter Notes . 108

6 String Processing 110
6.1 Overview and Motivation . 110
6.2 Ad Hoc String Processing Problems . 110
6.3 String Processing with Dynamic Programming . 112

6.3.1 String Alignment (Edit Distance) . 112
6.3.2 Longest Common Subsequence . 113

iii

CONTENTS c© Steven & Felix, NUS

6.3.3 Palindrome . 113
6.4 Suffix Tree and Suffix Array . 114

6.4.1 Suffix Tree: Basic Ideas . 114
6.4.2 Applications of Suffix Tree . 115
6.4.3 Suffix Array: Basic Ideas . 116

6.5 Chapter Notes . 119

7 (Computational) Geometry 120
7.1 Overview and Motivation . 120
7.2 Geometry Basics . 121
7.3 Graham’s Scan . 128
7.4 Intersection Problems . 130
7.5 Divide and Conquer Revisited . 131
7.6 Chapter Notes . 132

A Problem Credits 133

B We Want Your Feedbacks 134

Bibliography 135

iv

CONTENTS c© Steven & Felix, NUS

Acknowledgements
.

Steven wants to thank:

• God, Jesus Christ, Holy Spirit, for giving talent and passion in this competitive programming.

• My lovely wife, Grace Suryani, for allowing me to spend our precious time for this project.

• My younger brother and co-author, Felix Halim, for sharing many data structures, algorithms,

and programming tricks to improve the writing of this book.

• My father Lin Tjie Fong and mother Tan Hoey Lan for raising us and encouraging us to do

well in our study and work.

• School of Computing, National University of Singapore, for employing me and allowing me

to teach CS3233 - ‘Competitive Programming’ module from which this book is born.

• NUS/ex-NUS professors/lecturers who have shaped my competitive programming and coach-

ing skills: Prof Andrew Lim Leong Chye, Dr Tan Sun Teck, Aaron Tan Tuck Choy, Dr Sung

Wing Kin, Ken, Dr Alan Cheng Holun.

• Fellow Teaching Assistants of CS3233 and ACM ICPC Trainers @ NUS: Su Zhan, Ngo Minh

Duc, Melvin Zhang Zhiyong, Bramandia Ramadhana.

• My CS3233 students in Sem2 AY2008/2009 who inspired me to come up with the lecture

notes and CS3233 students in Sem2 AY2009/2010 who help me verify the content of this

book plus the Live Archive contribution.

• My friend Ilham Winata Kurnia for proof reading the manuscript.

Copyright
This book is written mostly during National University of Singapore (NUS) office hours as part

of the ‘lecture notes’ for a module titled CS3233 - Competitive Programming. Hundreds of hours

have been devoted to write this book.

Therefore, no part of this book may be reproduced or transmitted in any form or by any means,

electronically or mechanically, including photocopying, scanning, uploading to any information

storage and retrieval system.

v

CONTENTS c© Steven & Felix, NUS

Foreword

Long time ago (exactly the Tuesday November 11th 2003 at 3:55:57 UTC), I received an e-mail

with the following sentence: I should say in a simple word that with the UVa Site, you have given

birth to a new CIVILIZATION and with the books you write (he meant “Programming Challenges:

The Programming Contest Training Manual” [23], coauthored with Steven Skiena), you inspire the

soldiers to carry on marching. May you live long to serve the humanity by producing super-human

programmers.

Although it’s clear that was an exaggeration, to tell the truth I started thinking a bit about and

I had a dream: to create a community around the project I had started as a part of my teaching

job at UVa, with persons from everywhere around the world to work together after that ideal. Just

by searching in Internet I immediately found a lot of people who was already creating a web-ring

of sites with excellent tools to cover the many lacks of the UVa site.

The more impressive to me was the ’Methods to Solve’ from Steven Halim, a very young

student from Indonesia and I started to believe that the dream would become real a day, because

the contents of the site were the result of a hard work of a genius of algorithms and informatics.

Moreover his declared objectives matched the main part of my dream: to serve the humanity. And

the best of the best, he has a brother with similar interest and capabilities, Felix Halim.

It’s a pity it takes so many time to start a real collaboration, but the life is as it is. Fortunately,

all of us have continued working in a parallel way and the book that you have in your hands is the

best proof.

I can’t imagine a better complement for the UVa Online Judge site, as it uses lots of examples

from there carefully selected and categorized both by problem type and solving techniques, an

incredible useful help for the users of the site. By mastering and practicing most programming

exercises in this book, reader can easily go to 500 problems solved in UVa online judge, which will

place them in top 400-500 within ≈100000 UVa OJ users.

Then it’s clear that the book “Competitive Programming: Increasing the Lower Bound of

Programming Contests” is suitable for programmers who wants to improve their ranks in upcoming

ICPC regionals and IOIs. The two authors have gone through these contests (ICPC and IOI)

themselves as contestants and now as coaches. But it’s also an essential colleague for the newcomers,

because as Steven and Felix say in the introduction ‘the book is not meant to be read once, but

several times’.

Moreover it contains practical C++ source codes to implement the given algorithms. Because

understand the problems is a thing, knowing the algorithms is another, and implementing them

well in short and efficient code is tricky. After you read this extraordinary book three times you

will realize that you are a much better programmer and, more important, a more happy person.

Miguel A. Revilla

UVa Online Judge site creator

ACM-ICPC International Steering Committee Member and Problem Archivist

University of Valladolid

http://uva.onlinejudge.org

http://acmicpc-live-archive.uva.es

vi

CONTENTS c© Steven & Felix, NUS

Preface
This is a book that every competitive programmer must read – and master, at least during the

middle phase of their programming career: when they want to leap forward from ‘just knowing

some programming language commands’ and ‘some algorithms’ to become a top programmer.

Typical readers of this book will be: 1). Thousands University students competing in annual

ACM International Collegiate Programming Contest (ICPC) [27] regional contests, 2). Hundreds

Secondary or High School Students competing in annual International Olympiad in Informatics

(IOI) [12], 3). Their coaches who are looking for a comprehensive training materials [9], and 4).

Basically anyone who loves problem solving using computer.

Beware that this book is not for a novice programmer. When we wrote the book, we set it

for readers who have knowledge in basic programming methodology, familiar with at least one

programming language (C/C++/Java), and have passed basic data structures and algorithms (or

equivalent) typically taught in year one of Computer Science University curriculum.

Due to the diversity of its content, this book is not meant to be read once, but several times.

There are many exercises and programming problems scattered throughout the body text of this

book which can be skipped at first if solution is not known at that point of time, but can be

revisited in latter time after the reader has accumulated new knowledge to solve it. Solving these

exercises help strengthening the concepts taught in this book as they usually contain interesting

twists or variants of the topic being discussed, so make sure to attempt them.

Use uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=118,

felix-halim.net/uva/hunting.php, www.uvatoolkit.com/problemssolve.php, and

www.comp.nus.edu.sg/~stevenha/programming/acmoj.html to help you to deal with UVa [17]

problems listed in this book.

We know that one probably cannot win an ACM ICPC regional or get a gold medal in IOI just

by mastering the current version of this book. While we have included a lot of material in this

book, we are well aware that much more than what this book can offer, are required to achieve

that feat. Some pointers are listed throughout this book for those who are hungry for more.

We believe this book is and will be relevant to many University and high school students as

ICPC and IOI will be around for many years ahead. New students will require the ‘basic’ knowledge

presented in this book before hunting for more challenges after mastering this book. But before

you assume anything, please check this book’s table of contents to see what we mean by ‘basic’.

We will be happy if in year 2010 and beyond, the level of competitions in ICPC and IOI increase

because many of the contestants have mastered the content of this book. We hope to see many

ICPC and IOI coaches around the world, especially in South East Asia, adopt this book knowing

that without mastering the topics in and beyond this book, their students have no chance of doing

well in future ICPCs and IOIs. If such increase in ‘required lowerbound knowledge’ happens, this

book has fulfilled its objective of advancing the level of human knowledge in this era.

To a better future of humankind,

Steven and Felix Halim

PS: To obtain example source codes, visit http://sites.google.com/site/stevenhalim.

To obtain PowerPoint slides/other instructional materials (only for coaches), send a personal request

email to stevenhalim@gmail.com.

vii

CONTENTS c© Steven & Felix, NUS

Authors’ Profiles

Steven Halim, PhD <stevenhalim@gmail.com>

Steven Halim is currently an instructor in School of Computing, National University of Singapore

(SoC, NUS). He teaches several programming courses in NUS, ranging from basic programming

methodology, intermediate data structures and algorithms, and up to the ‘Competitive Program-

ming’ module that uses this book. He is the coach of both NUS ACM ICPC teams and Singapore

IOI team. He participated in several ACM ICPC Regional as student (Singapore 2001, Aizu 2003,

Shanghai 2004). So far, he and other trainers @ NUS have successfully groomed one ACM ICPC

World Finalist team (2009-2010) as well as two silver and two bronze IOI medallists (2009).

Felix Halim, PhD Candidate <felix.halim@gmail.com>

Felix Halim is currently a PhD student in the same University: SoC, NUS. In terms of programming

contests, Felix has much colorful reputation than his older brother. He was IOI 2002 contestant.

His teams (at that time, Bina Nusantara University) took part in ACM ICPC Manila Regional

2003-2004-2005 and obtained rank 10th, 6th, and 10th respectively. Then, in his final year, his

team finally won ACM ICPC Kaohsiung Regional 2006 and thus became ACM ICPCWorld Finalist

@ Tokyo 2007 (Honorable Mention). Today, felix halim actively joins TopCoder Single Round

Matches and his highest rating is a yellow coder.

viii

CONTENTS c© Steven & Felix, NUS

Convention
There are a lot of C++ codes shown in this book. Many of them uses typedefs, shortcuts, or

macros that are commonly used by competitive programmers to speed up the coding time. In this

short section, we list down several examples.

#define _CRT_SECURE_NO_DEPRECATE // suppress some compilation warning messages (for VC++ users)

// Shortcuts for "common" data types in contests

typedef long long ll;

typedef vector<int> vi;

typedef pair<int, int> ii;

typedef vector<ii> vii;

typedef set<int> si;

typedef map<string, int> msi;

// To simplify repetitions/loops, Note: define your loop style and stick with it!

#define REP(i, a, b) \

for (int i = int(a); i <= int(b); i++) // a to b, and variable i is local!

#define TRvi(c, it) \

for (vi::iterator it = (c).begin(); it != (c).end(); it++)

#define TRvii(c, it) \

for (vii::iterator it = (c).begin(); it != (c).end(); it++)

#define TRmsi(c, it) \

for (msi::iterator it = (c).begin(); it != (c).end(); it++)

#define INF 2000000000 // 2 billion

// If you need to recall how to use memset:

#define MEMSET_INF 127 // about 2B

#define MEMSET_HALF_INF 63 // about 1B

//memset(dist, MEMSET_INF, sizeof dist); // useful to initialize shortest path distances

//memset(dp_memo, -1, sizeof dp_memo); // useful to initialize DP memoization table

//memset(arr, 0, sizeof arr); // useful to clear array of integers

ix

CONTENTS c© Steven & Felix, NUS

Abbreviations

ACM : Association of Computing Machinery

AC : Accepted

APSP : All-Pairs Shortest Paths

AVL : Adelson-Velskii Landis (BST)

BNF : Backus Naur Form

BFS : Breadth First Search

BST : Binary Search Tree

CC : Coin Change

CCW : Counter ClockWise

CS : Computer Science

DAG : Directed Acyclic Graph

DAT : Direct Addressing Table

D&C : Divide and Conquer

DFS : Depth First Search

DP : Dynamic Programming

ED : Edit Distance

GCD : Greatest Common Divisor

ICPC : International Collegiate Programming

Contest

IOI : International Olympiad in Informatics

LA : Live Archive [11]

LCM : Lowest Common Ancestor

LCM : Lowest Common Multiple

LCS : Longest Common Subsequence

LIS : Longest Increasing Subsequence

MCM : Matrix Chain Multiplication

MCMF : Min-Cost Max-Flow

MLE : Memory Limit Exceeded

MST : Minimum Spanning Tree

MWIS : Maximum Weighted Independent Set

OJ : Online Judge

PE : Presentation Error

RB : Red-Black (BST)

RMQ : Range Minimum Query

RSQ : Range Sum Query

RTE : Run Time Error

SSSP : Single-Source Shortest Paths

STL : Standard Template Library

TLE : Time Limit Exceeded

UVa : University of Valladolid [17]

WA : Wrong Answer

WF : World Finals

x

List of Tables

1.1 Recent ACM ICPC Asia Regional Problem Types 4
1.2 Exercise: Classify These UVa Problems . 4
1.3 Problem Types (Compact Form) . 5
1.4 Rule of Thumb for the ‘Worst AC Algorithm’ for various input size n 6

3.1 DP Decision Table . 45

4.1 Some Graph Problems in Recent ACM ICPC Asia Regional 59
4.2 Graph Traversal Algorithm Decision Table . 69
4.3 SSSP Algorithm Decision Table . 77

5.1 Some Mathematics Problems in Recent ACM ICPC Asia Regional 93

6.1 Some String Processing Problems in Recent ACM ICPC Asia Regional 110

7.1 Some (Computational) Geometry Problems in Recent ACM ICPC Asia Regional . . 120

xi

List of Figures

1.1 University of Valladolid (UVa) Online Judge, a.k.a Spanish OJ [17] 10
1.2 ACM ICPC Live Archive [11] . 10
1.3 USACO Training Gateway [18] . 11
1.4 TopCoder [26] . 11
1.5 Some Reference Books that Inspired the Authors to Write This Book 13

2.1 Examples of BST (Left) and Heap (Right) . 17
2.2 Example of various Graph representations . 18
2.3 Calling initSet() to Create 5 Disjoint Sets . 20
2.4 Calling unionSet(i, j) to Union Disjoint Sets . 20
2.5 Calling findSet(i) to Determine the Representative Item (and Compressing the

Path) . 21
2.6 Calling isSameSet(i, j) to Determine if Both Items Belong to the Same Set 21
2.7 Segment Tree of Array A {8, 7, 3, 9, 5, 1, 10} . 22
2.8 Updating Array A to {8, 7, 3, 9, 5, 100, 10}. Only leaf-to-root nodes are affected. . 23

3.1 One Solution for 8-Queens Problem: {2, 4, 6, 8, 3, 1, 7, 5} 28
3.2 UVa 10360 - Rat Attack Illustration with d = 1 . 30
3.3 Visualization of UVa 410 - Station Balance . 36
3.4 UVa 410 - Observation 1 . 36
3.5 UVa 410 - Observation 2 . 36
3.6 UVa 410 - Greedy Solution . 37
3.7 Illustration for ACM ICPC WF2009 - A - A Careful Approach 38
3.8 UVa 11450 - Bottom-Up DP Solution . 44
3.9 Longest Increasing Subsequence . 46
3.10 Coin Change . 47
3.11 ACM ICPC Singapore 2007 - Jayjay the Flying Squirrel Collecting Acorns 51
3.12 Max Weighted Independent Set (MWIS) on Tree . 53
3.13 Root the Tree . 54
3.14 MWIS on Tree - The Solution . 55

4.1 Sample graph for the early part of this section . 59
4.2 Animation of DFS . 62
4.3 Introducing two more DFS attributes: dfs number and dfs low 63
4.4 Finding articulation points with dfs num and dfs low 64
4.5 Finding bridges, also with dfs num and dfs low . 64
4.6 An example of directed graph and its Strongly Connected Components (SCC) 65
4.7 Animation of BFS (from UVa 336 [17]) . 68
4.8 Example of a Minimum Spanning Tree (MST) Problem (from UVa 908 [17]) 70
4.9 Kruskal’s Algorithm for MST Problem (from UVa 908 [17]) 71
4.10 ‘Maximum’ Spanning Tree Problem . 71
4.11 Partial ‘Minimum’ Spanning Tree Problem . 72
4.12 Minimum Spanning ‘Forest’ Problem . 72

xii

LIST OF FIGURES c© Steven & Felix, NUS

4.13 Second Best Spanning Tree (from UVa 10600 [17]) 73
4.14 Finding the Second Best Spanning Tree from the MST 73
4.15 Dijkstra Animation on a Weighted Graph (from UVa 341 [17]) 75
4.16 Dijkstra fails on Graph with negative weight . 76
4.17 Bellman Ford’s can detect the presence of negative cycle (from UVa 558 [17]) 76
4.18 Floyd Warshall’s Explanation . 78
4.19 Using Intermediate Vertex to (Possibly) Shorten Path 79
4.20 Floyd Warshall’s DP Table . 79
4.21 Illustration of Max Flow (From UVa 820 [17] - ICPC World Finals 2000 Problem E) 81
4.22 Implementation of Ford Fulkerson’s Method with DFS is Slow 82
4.23 Vertex Splitting Technique . 84
4.24 Comparison Between Max Independent Paths versus Max Edge-Disjoint Paths . . . 84
4.25 Special Graphs (Left to Right): Tree, Directed Acyclic Graph, Bipartite Graph . . . 85
4.26 Min Path Cover in DAG (from LA 3126 [11]) . 88
4.27 Bipartite Matching can be reduced to Max Flow problem 90
4.28 Example of MWIS on Bipartite Graph (from LA 3487 [11]) 90
4.29 Reducing MWIS on Bipartite Graph to Max Flow Problem (from LA 3487 [11]) . . . 91
4.30 Solution for Figure 4.29 (from LA 3487 [11]) . 91

6.1 String Alignment Example for A = ‘ACAATCC’ and B = ‘AGCATGC’ (score = 7) 113
6.2 Suffix Trie (Left) and Suffix Tree (Right) of S = ’acacag$’ (Figure from [24]) 114
6.3 Generalized Suffix Tree of S1 = ’acgat#’ and S2 = ’cgt$’ (Figure from [24]) 116
6.4 Suffix Array of S = ’acacag$’ (Figure from [24]) . 116
6.5 Suffix Tree versus Suffix Array of S = ’acacag$’ (Figure from [24]) 116

7.1 Circles . 122
7.2 Triangles . 122
7.3 Quadrilaterals . 124
7.4 Great-Circle and Great-Circle Distance (Arc A-B) (Figures from [46]) 125
7.5 Convex Hull CH(P) of Set of Points P . 128
7.6 Athletics Track (from UVa 11646) . 131

xiii

Chapter 1

Introduction

I want to compete in ACM ICPC World Final!

— A dedicated student

In this chapter, we introduce readers to the world of competitive programming. Hopefully you enjoy the ride

and continue reading and learning until the very last page of this book, enthusiastically.

1.1 Competitive Programming

‘Competitive Programming’ in summary, is this: “Given well-known Computer Science (CS) prob-

lems, solve them as quickly as possible!”.

Let’s digest the terms one by one. The term ‘well-known CS problems’ implies that in compet-

itive programming, we are dealing with solved CS problems and not research problems (where the

solutions are still unknown). Definitely, some people (at least the problem setter) have solved these

problems before. ‘Solve them’ implies that we must push our CS knowledge to a certain required

level so that we can produce working codes that can solve these problems too – in terms of getting

the same output as the problem setter using the problem setter’s secret input data. ‘As quickly as

possible’ is the competitive element which is a very natural human behavior.

Please note that being well-versed in competitive programming is not the end goal, it is just

the means. The true end goal is to produce all-rounded computer scientists/programmers who are

much more ready to produce better software or to face harder CS research problems in the future.

The founders of ACM International Collegiate Programming Contest (ICPC) [27] have this vision

and we, the authors, agree with it. With this book, we play our little roles in preparing current

and future generations to be more competitive in dealing with well-known CS problems frequently

posed in recent ICPCs and International Olympiad in Informatics (IOI).

Illustration on solving UVa Online Judge [17] Problem Number 10911 (Forming Quiz Teams).

Abridged problem description: Let (x,y) be the coordinate of a student’s house on a 2-D plane.

There are 2N students and we want to pair them into N groups. Let di be the distance

between the houses of 2 students in group i. Form N groups such that
∑N

i=1 di is minimized.

Constraints: N ≤ 8; 0 ≤ x, y ≤ 1000. Think first, try not to flip this page immediately!

1

1.2. TIPS TO BE COMPETITIVE c© Steven & Felix, NUS

Now, ask yourself, which one is you? Note that if you are unclear with the materials or termi-

nologies shown in this chapter, you can re-read it after going through this book once.

• Non-competitive programmer A (a.k.a the blurry one):

Step 1: Read the problem... confused @-@, never see this kind of problem before.

Step 2: Try to code something... starting from reading non-trivial input and output.

Step 3: Realize that all his attempts fail:

Greedy solution: pair students based on shortest distances givesWrong Answer (WA).

Complete search using backtracking gives Time Limit Exceeded (TLE).

After 5 hours of labor (typical contest time), no Accepted (AC) solution is produced.

• Non-competitive programmer B (Give up):

Step 1: Read the problem...

Then realize that he has seen this kind of problem before.

But also remember that he has not learned how to solve this kind of problem...

He is not aware of a simple solution for this problem: Dynamic Programming (DP)...

Step 2: Skip the problem and read another problem.

• (Still) non-competitive programmer C (Slow):

Step 1: Read the problem and realize that it is a ‘matching on general graph’ problem.

In general, this problem must be solved using ‘Edmond’s Blossom Shrinking’ [34].

But since the input size is small, this problem is solve-able using Dynamic Programming!

Step 2: Code I/O routine, write recursive top-down DP, test the solution, debug >.<...

Step 3: Only after 3 hours, his solution is judged as AC (passed all secret test data).

• Competitive programmer D:

Same as programmer C, but do all those steps above in less than 30 minutes.

• Very Competitive programmer E:

Of course, a very competitive programmer (e.g. the red ‘target’ coders in TopCoder [26])

may solve this ‘classical’ problem in less than 15 minutes...

1.2 Tips to be Competitive

If you strive to be like competitive programmer D or E in the illustration above. That is, you want

to do well to qualify and get a medal in IOI [12]; to qualify in ACM ICPC [27] national, regional,

and up to world final; or in other programming contests, then this book is definitely for you!

In subsequent chapters, you will learn basic to medium data structures and algorithms frequently

appearing in recent programming contests, compiled from many sources [19, 6, 20, 2, 4, 14, 21, 16,

23, 1, 13, 5, 22, 15, 47, 24] (see Figure 1.5). But you will not just learn the algorithm, but also how

to implement them efficiently and apply them to appropriate contest problem.

On top of that, you will also learn many tiny bits of programming tips from our experience that

can be helpful in contest situation. We will start by giving you few general tips below:

Tip 0: Type Code Faster!

No kidding! Although this tip may not mean much as ICPC nor IOI are about typing speed

competition, but we have seen recent ICPCs where rank i and rank i+1 are just separated by few

minutes. When you can solve the same number of problems as your competitor, it is now down to

coding skill and ... typing speed.

2

1.2. TIPS TO BE COMPETITIVE c© Steven & Felix, NUS

Try this typing test at http://www.typingtest.com and follow the instructions there on how to

improve your typing skill. Steven’s is ∼85-95 wpm and Felix’s is ∼55-65 wpm. You also need to

familiarize your fingers with the position of frequently used programming language characters, e.g.

braces {} or () or <>, semicolon ‘;’, single quote for ‘char’ and double quotes for “string”, etc.

As a little practice, try typing this C++ code (a UVa 10911 solution above) as fast as possible.

/* Forming Quiz Teams. This DP solution will be explained in Section 3.4 */

#include <iostream>

#include <algorithm>

#include <string.h>

#include <math.h>

using namespace std;

int N;

double dist[20][20], memo[1 << 16]; // 1 << 16 is 2^16, recall that max N = 8

double matching(int bit_mask) {

if (memo[bit_mask] > -0.5) // see that we initialize the array with -1 in the main function

return memo[bit_mask];

if (bit_mask == (1 << 2 * N) - 1) // all are matched

return memo[bit_mask] = 0;

double matching_value = 32767 * 32767; // initialize with large value

for (int p1 = 0; p1 < 2 * N; p1++)

if (!(bit_mask & (1 << p1))) { // if this bit is off

for (int p2 = p1 + 1; p2 < 2 * N; p2++)

if (!(bit_mask & (1 << p2))) // if this different bit is also off

matching_value = min(matching_value,

dist[p1][p2] + matching(bit_mask | (1 << p1) | (1 << p2)));

break; // this ’break’ is necessary. do you understand why?

} // hint: it helps reducing time complexity from O((2N)^2 * 2^(2N)) to O((2N) * 2^(2N))

return memo[bit_mask] = matching_value;

}

int main() {

char line[1000], name[1000];

int i, j, caseNo = 1, x[20], y[20];

// freopen("10911.txt", "r", stdin); // one way to simplify testing

while (sscanf(gets(line), "%d", &N), N) {

for (i = 0; i < 2 * N; i++)

sscanf(gets(line), "%s %d %d", &name, &x[i], &y[i]);

for (i = 0; i < 2 * N; i++) // build pairwise distance table

for (j = 0; j < 2 * N; j++)

dist[i][j] = sqrt((double)(x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));

// using DP to solve matching on general graph

memset(memo, -1, sizeof memo);

printf("Case %d: %.2lf\n", caseNo++, matching(0));

}

return 0;

}

3

1.2. TIPS TO BE COMPETITIVE c© Steven & Felix, NUS

1.2.1 Tip 1: Quickly Identify Problem Types

In ICPCs, the contestants will be given a set of problems (≈ 7-11 problems) of varying types. From

our observation of recent ICPC Asia Regional problem sets, we can categorize the problems types

and their rate of appearance as in Table 1.1. For IOI, please refer to IOI syllabus 2009 [8] and [28].

No Category Sub-Category In This Book Appearance Frequency

1. Ad Hoc Straightforward Section 1.3 1-2
Simulation Section 1.3 0-1

2. Complete Search Iterative Section 3.1 0-1
Backtracking Section 3.1 0-1

3. Divide & Conquer Section 3.2 0-1
4. Greedy Classic Section 3.3.1 ≈0

Original Section 3.3.2 1
5. Dynamic Programming Classic Section 3.4.2 ≈0

Original Section 3.4.3 1-2 (can go up to 3)

6. Graph Chapter 4 1-2
7. Mathematics Chapter 5 1-2
8. String Processing Chapter 6 1
9. Computational Geometry Chapter 7 1
10. Some Harder Problems 0-1

Total in Set 7-16 (usually ≤ 11)

Table 1.1: Recent ACM ICPC Asia Regional Problem Types

The classification in Table 1.1 is adapted from [18] and by no means complete. Some problems,

e.g. ‘sorting’, are not classified here as they are ‘trivial’ and only used as ‘sub-routine’ in a bigger

problem. We do not include ‘recursion’ as it is embedded in other categories. We also omit ‘data

structure related problems’ and such problems will be categorized as ‘Ad Hoc’.

Of course there can be a mix and match of problem types: one problem can be classified into

more than one type, e.g. Floyd Warshall’s is either a solution for graph problem: All-Pairs Shortest

Paths (APSP, Section 4.7) or a Dynamic Programming (DP) algorithm (Section 3.4).

In the future, these classifications may grow or change. One significant example is DP. This

technique was not known before 1940s, not frequently used in ICPCs or IOIs before mid 1990s, but

it is a must today. There are ≥ 3 DP problems (out of 11) in recent ICPC World Finals 2010.

As an exercise, read the UVa [17] problems shown in Table 1.2 and determine their problem

types. The first one has been filled for you. Filling this table is easy after mastering this book.

UVa Title Problem Type Hint

10360 Rat Attack Complete Search or Dynamic Programming Section 3.1 or 3.4
10341 Solve It Section 3.2
11292 Dragon of Loowater Section 3.3
11450 Wedding Shopping Section 3.4
11635 Hotel Booking Section 4.3 + 4.5
11506 Angry Programmer Section 4.8
10243 Fire! Fire!! Fire!!! Section 4.9.1
10717 Mint Section 5.3.2
11512 GATTACA Section 6.4
10065 Useless Tile Packers Section 7.3

Table 1.2: Exercise: Classify These UVa Problems

4

1.2. TIPS TO BE COMPETITIVE c© Steven & Felix, NUS

The goal is not just to map problems into categories as in Table 1.1. After you are familiar with

most of the topics in this book, you can classify the problems into just four types as in Table 1.3.

No Category Confidence and Expected Solving Speed

A. I have solved this type before Confident that I can solve it again now (and fast)
B. I have solved this type before But I know coding the solution takes time
C. I have seen this type before But that time I have not or cannot solve it
D. I have not seen this type before I may or may not be able to solve it now

Table 1.3: Problem Types (Compact Form)

To be competitive, you must frequently classify the problems that you read in the problem set into

type A (or at least type B).

1.2.2 Tip 2: Do Algorithm Analysis

Once you have designed an algorithm to solve a particular problem in a programming contest,

you must now ask this question: Given the maximum input bound (usually given in a good prob-

lem description), can the currently developed algorithm, with its time/space complexity, pass the

time/memory limit given for that particular problem?

Sometimes, there are more than one way to attack a problem. However, some of them may be

incorrect and some of them are not fast enough... The rule of thumb is: Brainstorm many possible

algorithms - then pick the simplest that works (fast enough to pass the time and memory limit,

yet still produce correct answer)!

For example, the maximum size of input n is 100K, or 105 (1K = 1, 000), and your algorithm

is of order O(n2). Your common sense told you that (100K)2 is an extremely big number, it is

1010. So, you will try to devise a faster (and correct) algorithm to solve the problem, say of order

O(n log2 n). Now 105 log2 10
5 is just 1.7 × 106... Since computer nowadays are quite fast and can

process up to order 1M , or 106 (1M = 1, 000, 000) operations in seconds, your common sense told

you that this one likely able to pass the time limit.

Now how about this scenario. You can only devise an algorithm of order O(n4). Seems pretty

bad right? But if n ≤ 10... then you are done. Just directly implement your O(n4) algorithm since

104 is just 10K and your algorithm will only use relatively small computation time.

So, by analyzing the complexity of your algorithm with the given input bound and stated

time/memory limit, you can do a better judging whether you should try coding your algorithm

(which will take your time, especially in the time-constrained ICPCs and IOIs), or attempt to

improve your algorithm first or switch to other problems in the problem set.

In this book, we will not discuss the concept of algorithm analysis. We assume that you have

this basic skill. Please check this reference book: “Introduction to Algorithms” [4] and make sure

you understand how to:

• Prove correctness of an algorithm (especially for Greedy algorithms, see Section 3.3).

• Analyze time/space complexity analysis for iterative and recursive algorithms.

• Perform amortized analysis (see [4], Chapter 17) – although rarely used in contests.

• Do output-sensitive analysis, to analyze algorithm which depends on output size, example:

the O(|Q|+ occ) complexity for finding an exact string matching of query string Q with help

of Suffix Tree (see Section 6.4).

5

1.2. TIPS TO BE COMPETITIVE c© Steven & Felix, NUS

Many novice programmers usually skip this phase and tempted to directly code the first algorithm

that they can think of (usually the näıve version), after that they ended up realizing that the chosen

data structure is not efficient or their algorithm is not fast enough (or wrong). Our advice: refrain

from coding until you are sure that your algorithm is both correct and fast enough.

To help you in judging how fast is ‘enough’, we produce Table 1.4. Variants of such Table 1.4

can also be found in many algorithms book. However, we put another one here from programming

contest perspective. Usually, the input size constraints are given in the problem description. Us-

ing some logical assumptions that typical year 2010 CPU can do 1M operations in 1s and time

limit of 3s (typical time limit used in most UVa online judge [17] problems), we can predict the

‘worst’ algorithm that can still pass the time limit. Usually, the simplest algorithm has poor time

complexity, but if it can already pass the time limit, just use it!

From Table 1.4, we see the importance of knowing good algorithms with lower order of growth

as they allow us to solve problems with bigger input size. Beware that a faster algorithm is usually

non trivial and harder to code. In Section 3.1.2 later, we will see a few tips that may allow us to

enlarge the possible input size n for the same class of algorithm.

n Worst AC Algorithm Comment

≤ 10 O(n!), O(n6) e.g. Enumerating a Permutation
≤ 20 O(2n), O(n5) e.g. DP + Bitmask Technique
≤ 50 O(n4) e.g. DP with 3 dimensions + O(n) loop, choosing nCk=4

≤ 100 O(n3) e.g. Floyd Warshall’s
≤ 1K O(n2) e.g. Bubble/Selection/Insertion Sort
≤ 100K O(n log2 n) e.g. Merge Sort, building Segment Tree
≤ 1M O(n), O(log2 n), O(1) Usually, contest problem has n ≤ 1M (e.g. to read input)

Table 1.4: Rule of Thumb for the ‘Worst AC Algorithm’ for various input size n (single test case
only), assuming that year 2010 CPU can compute 1M items in 1s and Time Limit of 3s.

Additionally, we have a few other rules of thumb:

• 210 ≈ 103, 220 ≈ 106.

• Max 32-bit signed integer: 231 − 1 ≈ 2× 109 (or up to ≈ 9 decimal digits);

Max 64-bit signed integer (long long) is 263 − 1: 9× 1018 (or up to ≈ 18 decimal digits).

Use ‘unsigned’ if slightly higher positive number is needed [0 . . . 264 − 1].

If you need to store integers ≥ 264, you need to use the Big Integer technique (Section 5.4).

• Program with nested loops of depth k running about n iterations each has O(nk) complexity.

• If your program is recursive with b recursive calls per level and has L levels, the program has

roughly O(bL) complexity. But this is an upper bound. The actual complexity depends on

what actions done per level and whether some pruning are possible.

• Dynamic Programming algorithms which fill a 2-D matrix in O(k) per cell is in O(k × n2).

• The best time complexity of a comparison-based sorting algorithm is Ω(n log2 n).

• Most of the time, O(n log2 n) algorithms will be sufficient for most contest problems.

6

1.2. TIPS TO BE COMPETITIVE c© Steven & Felix, NUS

As an exercise for this section, please answer the following questions:

1. There are n webpages (1 ≤ n ≤ 10M). Each webpage i has different page rank ri. You want

to pick top 10 pages with highest page ranks. Which method is more feasible?

(a) Load all n webpages’ page rank to memory, sort (Section 2.2.1), and pick top 10.

(b) Use priority queue data structure (heap) (Section 2.2.2).

2. Given a list L of up to 10K integers, you want to frequently ask the value of sum(i, j), i.e.

the sum of L[i] + L[i+1] + ... + L[j]. Which data structure should you use?

(a) Simple Array (Section 2.2.1).

(b) Balanced Binary Search Tree (Section 2.2.2).

(c) Hash Table (Section 2.2.2).

(d) Segment Tree (Section 2.3.3).

(e) Suffix Tree (Section 6.4).

(f) Simple Array that is pre-processed with Dynamic Programming (Section 2.2.1 & 3.4).

3. You have to compute the ‘shortest path’ between two vertices on a weighted Directed Acyclic

Graph (DAG) with |V |, |E| ≤ 100K. Which algorithm(s) can be used?

(a) Dynamic Programming + Topological Sort (Section 3.4, 4.2, & 4.9.2).

(b) Breadth First Search (Section 4.3).

(c) Dijkstra’s (Section 4.5).

(d) Bellman Ford’s (Section 4.6).

(e) Floyd Warshall’s (Section 4.7).

4. Which algorithm is faster (based on its time complexity) for producing a list of the first 10K

prime numbers? (Section 5.3.1)

(a) Sieve of Eratosthenes (Section 5.3.1).

(b) For each number i ∈ [1− 10K], test if i is a prime with prime testing function.

1.2.3 Tip 3: Master Programming Languages

There are several programming languages allowed in ICPC, including C/C++ and Java. Which

one should we master? Our experience gives us the following answer: although we prefer C++

with built-in Standard Template Library (STL), we still need to master Java, albeit slower, since

this language has a powerful BigInteger, String Processing, and GregorianCalendar API. Simple

illustration is shown below (part of the solution for UVa problem 623: 500!):

Compute 25! (factorial of 25). The answer is very large: 15,511,210,043,330,985,984,000,000.

This is way beyond the largest built-in data structure (unsigned long long: 264 − 1) in C/C++.

Using C/C++, you will hard time coding this simple problem as there is no native support for Big

Integer data structure in C/C++ yet. Meanwhile, the Java code is simply this:

7

1.2. TIPS TO BE COMPETITIVE c© Steven & Felix, NUS

import java.util.*;

import java.math.*;

class Main { // standard class name in UVa OJ

public static void main(String[] args) {

BigInteger fac = new BigInteger.valueOf(1); // :)

for (int i = 2; i <= 25; i++)

fac = fac.multiply(BigInteger.valueOf(i)); // wow :)

System.out.println(fac);

} }

Another illustration to reassure you that mastering a programming language is good: Read this

input: There are N lines, each line always start with character ’0’ followed by ’.’, then unknown

number of digits x, finally each line always terminated with three dots ”...”. See an example below.

2

0.1227...

0.517611738...

One solution is as follows:

#include <iostream> // or <cstdio>

using namespace std;

char digits[100]; // using global variables in contests can be a good strategy

int main() {

scanf("%d", &N);

while (N--) { // we simply loop from N, N-1, N-2, ... 0

scanf("0.%[0-9]...", &digits); // surprised?

printf("the digits are 0.%s\n", digits);

} }

Not many C/C++ programmers are aware of the trick above. Although scanf/printf are C-style

I/O routines, they can still be used in C++ code. Many C++ programmers ‘force’ themselves to

use cin/cout all the time which, in our opinion, are not as flexible as scanf/printf and slower.

In ICPCs, coding should not be your bottleneck at all. That is, once you figure out the ‘worst

AC algorithm’ that will pass the given time limit, you are supposed to be able to translate it into

bug-free code and you can do it fast! Try to do some exercises below. If you need more than

10 lines of code to solve them, you will need to relearn your programming language(s) in depth!

Mastery of programming language routines will help you a lot in programming contests.

1. Given a string that represents a base X number, e.g. FF (base 16, Hexadecimal), convert it

to base Y, e.g. 255 (base 10, Decimal), 2 ≤ X,Y ≤ 36. (More details in Section 5.4.2).

2. Given a list of integers L of size up to 1M items, determine whether a value v exists in L?

(More details in Section 2.2.1).

3. Given a date, determine what is the day (Monday, Tuesday, ..., Sunday) of that date?

4. Given a long string, replace all the occurrences of a character followed by two consecutive

digits in with “***”, e.g. S = “a70 and z72 will be replaced, but aa24 and a872 will not” will

be transformed to S = “*** and *** will be replaced, but aa24 and a872 will not”.

8

1.2. TIPS TO BE COMPETITIVE c© Steven & Felix, NUS

1.2.4 Tip 4: Master the Art of Testing Code

You thought you have nailed a particular problem. You have identified its type, designed the

algorithm for it, calculated the algorithm’s time/space complexity - it will be within the time and

memory limit given, and coded the algorithm. But, your solutoin is still not Accepted (AC).

Depending on the programming contest’s type, you may or may not get credit by solving the

problem partially. In ICPC, you will only get credit if your team’s code solve all the judge’s secret

test cases, that’s it, you get AC. Other responses like Presentation Error (PE), Wrong Answer

(WA), Time Limit Exceeded (TLE), Memory Limit Exceeded (MLE), Run Time Error (RTE), etc

do not increase your team’s points. In IOI (2009 rule), there exists a partial credit system, in which

you will get scored based on the number of correct/total number of test cases for the latest code

that you have submitted for that problem, but the judging will only be done after the contest is

over, so you must be very sure that your code is doing OK.

In either case, you will need to be able to design good, educated, tricky test cases. The sample

input-output given in problem description is by default too trivial and therefore not a good way

for measuring your code’s correctness.

Rather than wasting submissions (and get time or point penalties) by getting non AC responses,

you may want to design some tricky test cases first, test it in your own machine, and ensure your

code is able to solve it correctly (otherwise, there is no point submitting your solution right?).

Some coaches ask their students to compete with each other by designing test cases. If student

A’s test cases can break other student’s code, then A will get bonus point. You may want to try

this in your team training too :). This concept is also used in TopCoder [26] ‘challenge phase’.

Here are some guidelines for designing good test cases, based on our experience:

1. Must include sample input as you have the answer given... Use ‘fc’ in Windows or ‘diff’ in

UNIX to help checking your code’s output against the sample output.

2. Must include boundary cases. Increase the size of input incrementally up to the maximum

possible. Sometimes your program works for small input size, but behave wrongly when input

size increases. Check for overflow, out of bounds, etc.

3. For multiple input test cases, use two identical test cases consecutively. Both must output the

same result. This is to check whether you have forgotten to initialize some variables, which

will be easily identified if the 1st instance produce correct output but the 2nd one does not.

4. Create tricky test cases by identifying cases that are ‘hidden’ in the problem description.

5. Do not assume the input will always be nicely formatted if the problem description does not

say so (especially for badly written programming problem). Try inserting white spaces (space,

tabs) in your input, and check whether your code is able to read in the values correctly.

6. Finally, generate large random test cases. See if your code terminates on time and still give

reasonably ok output (correctness is hard to verify here – this test is only to verify that your

code runs within time limit).

However, after all these careful steps, you may still get non-AC responses. In ICPC, you and your

team can actually use the judge’s response to determine your next action. With more experience

in such contests, you will be able to make better judgment. See the next exercises:

9

1.2. TIPS TO BE COMPETITIVE c© Steven & Felix, NUS

1. You receive a WA response for a very easy problem. What should you do?

(a) Abandon this problem and do another.

(b) Improve the performance of the algorithm.

(c) Create tricky test cases and find the bug.

(d) (In team contest): Ask another coder in your team to re-do this problem.

2. You receive a TLE response for an your O(N3) solution. However, maximum N is just 100.

What should you do?

(a) Abandon this problem and do another.

(b) Improve the performance of the algorithm.

(c) Create tricky test cases and find the bug.

3. Follow up question (see question 2 above): What if maximum N is 100.000?

1.2.5 Tip 5: Practice and More Practice

Competitive programmers, like real athletes, must train themselves regularly and keep themselves

‘programming-fit’. Thus in our last tip, we give a list of websites that can help you improve your

problem solving skill. Success is a continuous journey!

University of Valladolid (from Spain) Online Judge [17] contains past years ACM contest prob-

lems (usually local or regional) plus problems from another sources, including their own contest

problems. You can solve these problems and submit your solutions to this Online Judge. The

correctness of your program will be reported as soon as possible. Try solving the problems men-

tioned in this book and see your name on the top-500 authors rank list someday :-). At the point

of writing (9 August 2010), Steven is ranked 121 (for solving 857 problems) while Felix is ranked

70 (for solving 1089 problems) from ≈ 100386 UVa users and 2718 problems.

Figure 1.1: University of Valladolid (UVa) Online Judge, a.k.a Spanish OJ [17]

UVa ‘sister’ online judge is the ACM ICPC Live Archive that contains recent ACM ICPC Regionals

and World Finals problem sets since year 2000. Train here if you want to do well in future ICPCs.

Figure 1.2: ACM ICPC Live Archive [11]

10

1.3. GETTING STARTED: AD HOC PROBLEMS c© Steven & Felix, NUS

USA Computing Olympiad has a very useful training website [18] for you to learn about program-

ming contest. This one is more geared towards IOI participants. Go straight to their website,

register your account, and train yourself.

Figure 1.3: USACO Training Gateway [18]

TopCoder arranges frequent ‘Single Round Match’ (SRM) [26] that consists of a few problems

that should be solved in 1-2 hours. Then afterwards, you are given the chance to ‘challenge’ other

contestants code by supplying tricky test cases. This online judge uses a rating system (red, yellow,

blue, etc coders) to reward contestants who are really good in problem solving with higher rating

as opposed to a more diligent contestants who happen to solve ‘more’ easier problems.

Figure 1.4: TopCoder [26]

1.3 Getting Started: Ad Hoc Problems

We will end this chapter by introducing you to the first problem type in ICPC: the Ad Hoc

problems. According to USACO training gateway [18], Ad Hoc problems are problems that ‘cannot

be classified anywhere else’, where each problem description and the corresponding solution are

‘unique’. Ad Hoc problems can be further classified into two: straightforward – where the solution

just requires translation of problem requirement to code; or simulation problem – where there are

some set of rules that must be simulated to obtain the answer.

Ad Hoc problems almost usually appear in a programming contest. Using a benchmark of total

10 problems, there may be 1-2 Ad Hoc problems. If the Ad Hoc problem is easy, it will usually

be the first problem being attacked by teams in a programming contest. But there exists Ad Hoc

problems that are complicated to code and some teams will strategically defer solving them until

the last hour. Assuming a 60 teams contest, your team is probably in lower half (rank 30-60) if

your team can only do this type of problem during an ICPC regional contest.

Get your coding skills up and running by solving these Ad Hoc problems before continuing to

the next chapter. We have selected one Ad Hoc problem from every volume in UVa online judge

[17] (there are 28 volumes as of 9 August 2010) plus several ones from ACM ICPC Live Archive

[11]. Note that some ‘simple’ Ad Hoc problems below are ‘tricky’.

11

1.3. GETTING STARTED: AD HOC PROBLEMS c© Steven & Felix, NUS

Programming Exercises related to Ad Hoc problems:

1. UVa 100 - The 3n + 1 problem (follow the problem description, note the term ‘between’ !)

2. UVa 272 - TEX Quotes (simply replace all double quotes to TEX() style quotes)

3. UVa 394 - Mapmaker (array manipulation)

4. UVa 483 - Word Scramble (read char by char from left to right)

5. UVa 573 - The Snail (be careful of boundary cases!)

6. UVa 661 - Blowing Fuses (simulation)

7. UVa 739 - Soundex Indexing (straightforward conversion problem)

8. UVa 837 - Light and Transparencies (sort the x-axis first)

9. UVa 941 - Permutations (find the n-th permutation of a string, simple formula exists)

10. UVa 10082 - WERTYU (keyboard simulation)

11. UVa 10141 - Request for Proposal (this problem can be solved with one linear scan)

12. UVa 10281 - Average Speed (distance = speed × time elapsed)

13. UVa 10363 - Tic Tac Toe (simulate the Tic Tac Toe game)

14. UVa 10420 - List of Conquests (simple frequency counting)

15. UVa 10528 - Major Scales (the music knowledge is given in the problem description)

16. UVa 10683 - The decadary watch (simple clock system conversion)

17. UVa 10703 - Free spots (array size is ‘small’, 500 x 500)

18. UVa 10812 - Beat the Spread (be careful with boundary cases!)

19. UVa 10921 - Find the Telephone (simple conversion problem)

20. UVa 11044 - Searching for Nessy (one liner code exists)

21. UVa 11150 - Cola (be careful with boundary cases!)

22. UVa 11223 - O: dah, dah, dah! (tedious morse code conversion problem)

23. UVa 11340 - Newspaper (use ‘Direct Addressing Table’ to map char to integer value)

24. UVa 11498 - Division of Nlogonia (straightforward problem)

25. UVa 11547 - Automatic Answer (one liner code exists)

26. UVa 11616 - Roman Numerals (roman numeral conversion problem)

27. UVa 11727 - Cost Cutting (sort the 3 numbers and get the median)

28. UVa 11800 - Determine the Shape (Ad Hoc geometry problem)

29. LA 2189 - Mobile Casanova (Dhaka06)

30. LA 3012 - All Integer Average (Dhaka04)

31. LA 3173 - Wordfish (Manila06) (STL next permutation, prev permutation)

32. LA 3996 - Digit Counting (Danang07)

33. LA 4202 - Schedule of a Married Man (Dhaka08)

34. LA 4786 - Barcodes (World Finals Harbin10)

12

1.4. CHAPTER NOTES c© Steven & Felix, NUS

1.4 Chapter Notes

Figure 1.5: Some Reference Books that Inspired the Authors to Write This Book

This and subsequent chapters are supported by many text books (see Figure 1.5) and Internet

resources. Tip 1 is an adaptation from introduction text in USACO training gateway [18]. More

details about Tip 2 can be found in many CS books, e.g. Chapter 1-5, 17 of [4]. Reference for

Tip 3 are http://www.cppreference.com, http://www.sgi.com/tech/stl/ for C++ STL and

http://java.sun.com/javase/6/docs/api for Java API. For more insights to do better testing

(Tip 4), a little detour to software engineering books may be worth trying. There are many other

Online Judges than those mentioned in Tip 5, e.g.

SPOJ http://www.spoj.pl,

POJ http://acm.pku.edu.cn/JudgeOnline,

TOJ http://acm.tju.edu.cn/toj,

ZOJ http://acm.zju.edu.cn/onlinejudge/,

Ural/Timus OJ http://acm.timus.ru, etc.

There are approximately 34 programming exercises discussed in this chapter.

13

Chapter 2

Data Structures and Libraries

If I have seen further it is only by standing on the shoulders of giants.

— Isaac Newton

This chapter acts as a foundation for subsequent chapters.

2.1 Data Structures

Data structure is ‘a way to store and organize data’ in order to support efficient insertions, queries,

searches, updates, and deletions. Although a data structure in itself does not solve the given

programming problem – the algorithm operating on it does, using the most efficient data structure

for the given problem may be a difference between passing or exceeding the problem’s time limit.

There are many ways to organize the same data and sometimes one way is better than the other

on different context, as we will see in the discussion below. Familiarity with the data structures

discussed in this chapter is a must in order to understand the algorithms in subsequent chapters.

As stated in the preface of this book, we assume that you are familiar with the basic data

structures listed in Section 2.2, and thus we will not review them again in this book. We simply

highlight the fact that they all have built-in libraries in C++ STL and Java API (Note that in this

version of the book, we write most example codes from C++ perspective). If you feel that you

are not sure with any of the terms or data structures mentioned in Section 2.2, pause reading this

book, quickly explore and learn that term in the reference books, e.g. [3]1, and resume when you

get the basic ideas of those data structures.

Note that for competitive programming, you just have to be able to use (i.e. know the strengths,

weaknesses, and time/space complexities) a certain data structure to solve the appropriate contest

problem. Its theoretical background is good to know, but can be skipped.

This chapter is divided into two parts. Section 2.2 contains basic data structures with their

basic operations that currently have built-in libraries. Section 2.3 contains more data structures for

which currently we have to build our own libraries. Because of this, Section 2.3 has more detailed

discussions than Section 2.2.

1Materials in Section 2.2 are usually taught in level-1 ‘data structures and algorithms’ course in CS curriculum.
High school students who are planning to join competitions like IOI are encouraged to do self-study on these material.

14

2.2. DATA STRUCTURES WITH BUILT-IN LIBRARIES � c© Steven & Felix, NUS

2.2 Data Structures with Built-in Libraries

2.2.1 Linear Data Structures

A data structure is classified as linear if its elements form a sequence. Mastery of all these basic

linear data structures below is a must to do well in today’s programming contests.

• Static Array in C/C++ and in Java

This is clearly the most commonly used data structure in programming contests whenever

there is a collection of sequential data to be stored and later accessed using their indices.

As the maximum input size is normally mentioned in a programming problem, then usually

the declared array size is this value + small extra buffer. Typical dimensions of the array

are: 1-D, 2-D, 3-D, and rarely goes beyond 4-D. Typical operations for array are: accessing

certain indices, sorting the array, linearly scanning, or binary searching the array.

• Resizeable Array a.k.a. Vector: C++ STL <vector> (Java ArrayList)

All else the same as static array but has auto-resize feature. Using vector over array is better

if array size is unknown beforehand, i.e. before running the program. Usually, we initialize

the size with some guess value for better performance. Typical operations are: push back(),

at(), [] operator, erase(), and typically use iterator to scan the content of the vector.

Efficient Sorting and Searching in Static/Resize-able Array

There are two central operations commonly performed on array: sorting and searching.

There are many sorting algorithms mentioned in CS textbooks, which we classify as:

1. O(n2) comparison-based sorting algorithms [4]: Bubble/Selection/Insertion Sort.

These algorithms are slow and usually avoided, but understanding them is important.

2. O(n log n) comparison-based sorting algorithms [4]: Merge/Heap/Random Quick Sort.

We can use C++ STL sort, partial sort, stable sort, in <algorithm> to achieve

this purpose (Java Collections.sort). We only need to specify the required comparison

function and these library routines will handle the rest.

3. Special purpose sorting algorithms [4]: O(n) Counting Sort, Radix Sort, Bucket Sort.

These special purpose algorithms are good to know, as they can speed up the sorting time

if the problem has special characteristics, like small range of integers for Counting Sort,

but they rarely appear in programming contests.

Then, there are basically three ways to search for an item in Array, which we classify as:

1. O(n) Linear Search from index 0 to index n− 1 (avoid this in programming contests).

2. O(log n) Binary Search: use lower bound in C++ STL <algorithm> (or Java

Collections.binarySearch). If the input is unsorted, it is fruitful to sort it just once

using an O(n logn) sorting algorithm above in order to use Binary Search many times.

3. O(1) with Hashing (but we can live without hashing for most contest problems).

• Linked List: C++ STL <list> (Java LinkedList)

Although this data structure almost always appears in data structure & algorithm textbooks,

Linked List is usually avoided in typical contest problems. Reasons: it involves pointers and

theoretically slow for accessing data as it has to be performed from the head or tail of a list.

15

2.2. DATA STRUCTURES WITH BUILT-IN LIBRARIES � c© Steven & Felix, NUS

• Stack: C++ STL <stack> (Java Stack)

This data structure is used as part of algorithm to solve a certain problem (e.g. Postfix

calculation, Graham’s scan in Section 7.3). Stack only allows insertion (push) and deletion

(pop) from the top only. This behavior is called Last In First Out (LIFO) as with normal

stack in the real world. Typical operations are push()/pop() (insert/remove from top of

stack), top() (obtain content from the top of stack), empty().

• Queue: C++ STL <queue> (Java Queue)

This data structure is used in algorithms like Breadth First Search (BFS) (Section 4.3). A

queue only allows insertion (enqueue) from the back (rear), and only allows deletion (dequeue)

from the head (front). This behavior is called First In First Out (FIFO), similar to normal

queue in the real world. Typical operations are push()/pop() (insert from back/take out from

front of queue), front()/back() (obtain content from the front/back of queue), empty().

2.2.2 Non-Linear Data Structures

For some computational problems, there are better ways to organize data other than ordering it

sequentially. With efficient implementation of non-linear data structures shown below, you can

search items much faster, which can speed up the algorithms that use them.

For example, if you want to store a dynamic collection of pairs (e.g. name → index pairs), then

using C++ STL <map> below can give you O(log n) performance for insertion/search/deletion

with just few lines of codes whereas storing the same information inside one static array of struct

may requires O(n) insertion/search/deletion and you have to code it by yourself.

• Balanced Binary Search Tree (BST): C++ STL <map>/<set> (Java TreeMap/TreeSet)

BST is a way to organize data as a tree-structure. In each subtree rooted at x, this BST

property holds: items on the left subtree of x are smaller than x and items on the right

subtree of x are greater (or equal) than x. Organizing the data like this (see Figure 2.1, left)

allows O(log n) insertion, search, and deletion as only O(log n) worst case root-to-leaf scan is

needed to perform those actions (details in [4]) – but this only works if the BST is balanced.

Implementing a bug-free balanced BST like AVL2 Tree or Red-Black (RB) Tree is tedious

and hard to do under time constrained contest environment. Fortunately, C++ STL has

<map> and <set> which are usually the implementation of RB Tree, thus all operations

are in O(log n). Mastery of these two STL templates can save a lot of precious coding time

during contests! The difference is simple: <map> stores (key → data) pair whereas <set>

only stores the key.

• Heap: C++ STL <queue>: priority queue (Java PriorityQueue)

Heap is another way to organize data as a tree-structure. Heap is also a binary tree like BST

but it must be complete. Instead of enforcing BST property, Heap enforces Heap property:

In each subtree rooted at x, items on the left and the right subtrees of x are smaller than x

(see Figure 2.1, right). This property guarantees that the top of the heap is the maximum

element. There is usually no notion of ‘search’ in Heap, but only insertion and deletion, which

can be easily done by traversing a O(log n) leaf-to-root or root-to-leaf path [4].

2However, for some tricky contest problems where you have to ‘augment your data structure’ (see Chapter 14 of
[4]), AVL Tree knowledge is needed as C++ STL <map> or <set> cannot be augmented easily.

16

2.2. DATA STRUCTURES WITH BUILT-IN LIBRARIES � c© Steven & Felix, NUS

Figure 2.1: Examples of BST (Left) and Heap (Right)

Heap is useful to model Priority Queue, where item with highest priority can be deleted in

O(log n) and new item can be inserted into priority queue also in O(log n). The implementa-

tion of priority queue is available in C++ STL <queue>. Priority Queue is an important

component in algorithms like Kruskal’s for Minimum Spanning Tree (MST) problem (Section

4.4) and Dijkstra’s for Single-Source Shortest Paths (SSSP) problem (Section 4.5).

This data structure is also used to perform partial sort in C++ STL <algorithm>. This

is done by taking the max element k times (k is the number of the top most items to be

sorted). As each delete-max is in O(log n), partial sort has O(k log n) time complexity.

• Hash Table: no native C++ STL support (Java HashMap/HashSet/HashTable)

Hash Table is another form of non-linear data structures, but we do not recommend using

it in contests unless necessary. Reasons: designing a good performing hash function is quite

tricky and there is no native C++ STL support for it. Moreover C++ STL <map> or <set>

are usually good enough as the typical input size of programming contest problems is ≤ 1M ,

making O(1) for Hash Table and O(log 1M) for balanced BST actually do not differ by much.

However, a form of Hash Table is actually used in contests, namely ‘Direct Addressing Table’

(DAT), where the key itself determines the index, bypassing the need of ‘hash function’. For

example, UVa 11340 - Newspaper, where all possible ASCII characters [0-255] are assigned

to certain monetary values, e.g. ‘a’ → ’3’, ‘W’ → ’10’, . . . , ‘I’ → ‘13’.

Programming exercises to practice using basic data structures and algorithms (with libraries):

• Static array, C++ STL <vector>, <bitset>, Direct Addressing Table

1. UVa 482 - Permutation Arrays (simple array manipulation)

2. UVa 594 - One Two Three Little Endian (manipulate bit string easily with<bitset>)

3. UVa 11340 - Newspaper (Direct Addressing Table)

• C++ STL <algorithm>

1. UVa 146 - ID Codes (use next permutation)

2. UVa 10194 - Football a.k.a. Soccer (multi-fields sorting, use sort)

3. UVa 10258 - Contest Scoreboard (multi-fields sorting, use sort)

• Sorting-related problems

1. UVa 299 - Train Swapping (inversion index3 problem solvable with bubble sort)

2. UVa 612 - DNA Sorting (inversion index + stable sort)

3. UVa 10810 - Ultra Quicksort (inversion index - requires O(n log n) merge sort)

3Inversion index problem: count how many swaps are needed to make the list sorted.

17

2.3. DATA STRUCTURES WITH OUR-OWN LIBRARIES � c© Steven & Felix, NUS

4. UVa 11462 - Age Sort (counting sort problem, see [4])

5. UVa 11495 - Bubbles and Buckets (inversion index - requires O(n logn) merge sort)

• C++ STL <stack>

1. UVa 127 - “Accordian” Patience (shuffling <stack>)

2. UVa 514 - Rails (use <stack> to simulate the process)

3. UVa 673 - Parentheses Balance (classical problem)

4. UVa 727 - Equation (Infix to Postfix conversion)

• C++ STL <queue>

1. UVa 336 - A Node Too Far (<queue> used inside BFS, Section 4.3)

2. UVa 10901 - Ferry Loading III (simulation with <queue>)

3. UVa 11034 - Ferry Loading IV (simulation with <queue>)

• C++ STL <map>/<set>

1. UVa 10226 - Hardwood Species (use <map>)

2. UVa 11239 - Open Source (use<map> and<set> to check previous strings efficiently)

3. UVa 11308 - Bankrupt Baker (use <map> and <set> to help managing the data)

4. UVa 11136 - Hoax or what (use multiset in <set>)

• C++ STL priority queue in <queue>

1. UVa 908 - Re-connecting Computer Sites (priority queue in Kruskal’s, Section 4.4)

2. UVa 11492 - Babel (priority queue in Dijkstra’s, Section 4.5)

3. LA 3135 - Argus (Beijing04)

2.3 Data Structures with Our-Own Libraries

As of 9 August 2010, important data structures shown in this section do not have built-in sup-

port yet in C++ STL or Java API. Thus, to be competitive, contestants must have a bug-free

implementations during contests. In this section, we only discuss the ideas of these data structures.

2.3.1 Graph

Graph is a pervasive data structure which appears in many CS problems. Graph is simply a

collection of vertices and edges (that store connectivity information between those vertices). In

Chapter 3 & 4, we will explore many important graph problems and algorithms. In this subsection,

we only briefly discuss four basic ways (there are others) to store graph information. Assuming

that we have a graph G with V vertices and E edges, here are the ways to store them:

Figure 2.2: Example of various Graph representations

18

2.3. DATA STRUCTURES WITH OUR-OWN LIBRARIES � c© Steven & Felix, NUS

A Adjacency Matrix, usually in form of 2-D array.

In contest problems involving graph, usually V is known, thus we can build a ‘connectivity

table’ by setting up a 2-D, O(V 2) static array: int AdjMat[V][V]. For an unweighted graph,

we set AdjMat[i][j] = 1 if there is an edge between vertex i-j and set 0 otherwise. For a

weighted graph, we set AdjMat[i][j] = weight(i, j) if there is an edge between vertex i-j

with weight(i, j) and set 0 otherwise.

Adjacency Matrix is good if the connectivity between two vertices in a small dense graph is

frequently asked, but it is not good for large sparse graph as there will be too many cells in

the 2-D array that are blank (contain zeroes). An adjacency Matrix requires exactly O(V) to

enumerate the list of neighbors of a vertex v – an operation commonly used in many graph

algorithms – even if vertex v only has a handful of neighbors. A more compact and efficient

form of graph representation is Adjacency List.

B Adjacency List, usually in form of C++ STL vector<vii> AdjList, with vii defined as:

typedef pair<int, int> ii; typedef vector<ii> vii; // our data type shortcuts

In Adjacency List, we have a vector of V vertices and for each vertex v, we store another

vector that contains pairs of (neighboring vertex and it’s edge weight) that have connection

to v. If the graph is unweighted, simply store weight = 0 or drop this second attribute.

With Adjacency List, we can enumerate the list of neighbors of a vertex v efficiently. If there

are k neighbors of v, this enumeration is O(k). As this is one of the most common operations

in most graph algorithms, it is advisable to stick with Adjacency List as your default choice.

C Edge List, usually in form of C++ STL priority queue<pair<int, ii> > EdgeList.

In Edge List, we store the list of edges, usually in some order. This structure is very useful

for Kruskal’s algorithm for MST (Section 4.4) where the collection of edges are sorted by their

length from shortest to longest.

D Parent-Child Tree Structure, usually in form of int parent & C++ STL vector<int> child.

If the graph is a tree (connected graph with no cycle and E = V − 1), like a directory/folder

structure, then there exists another form of data structure. For each vertex, we only store two

attributes: the parent (NULL for root vertex) and the list of children (NULL for leaves).

Exercise: Show the Adjacency Matrix, Adjacency List, and Edge List of the graph in Figure 4.1.

2.3.2 Union-Find Disjoint Sets

Union-Find Disjoint Sets is a data structure to model a collection of disjoint sets which has abilities

to efficiently4 1). ‘find’ which set an item belongs to (or to test whether two items belong to the

same set) and 2). ‘union’ two disjoint sets into one bigger set. These two operations are useful for

algorithms like Kruskal’s (Section 4.4) or problems that involve ‘partitioning’, like keeping track of

connected components of an undirected graph (see Section 4.2).

These seemingly simple operations are not efficiently supported by C++ STL <set> which only

deals with a single set. Having a vector of sets and looping through each one to find which set

4M operations of this data structure runs in O(M × α(n)), but α(n) is just less than 5 for most practical values
of n. For more details, see [33].

19

2.3. DATA STRUCTURES WITH OUR-OWN LIBRARIES � c© Steven & Felix, NUS

an item belongs to is expensive! C++ STL <algorithm>’s set union is also not efficient enough

although it combines two sets in linear time, as we still have to deal with the shuffling of the content

inside the vector of sets! Thus, we need our own library to support this data structure. One such

example is shown in this section.

The key ideas of this data structure are like this: Keep a representative (‘parent’) item of each

set. This information is stored in vector<int> pset, where pset[i] tells the representative item

of the set that contains item i. Example: suppose we have 5 items: {A, B, C, D, E} as 5 disjoint

sets of 1 item each. Each item initially has itself as the representative, as shown in Figure 2.3.

Figure 2.3: Calling initSet() to Create 5 Disjoint Sets

When we want to merge two sets, we call unionSet(i, j) which make both items ‘i’ and ‘j’ to

have the same representative item5 – directly or indirectly (see Path Compression below). This

is done by calling findSet(j) – what is the representative of item ‘j’, and assign that value to

pset[findSet(i)] – update the parent of the representative item of item ‘i’.

Figure 2.4: Calling unionSet(i, j) to Union Disjoint Sets

In Figure 2.4, we see what is happening when we call unionSet(i, j): every union is simply done

by changing the representative item of one item to point to the other’s representative item.

5There is another heuristic called ‘union-by-rank’ [4] that can further improve the performance of this data
structure. But we omit this enhancing heuristic from this book to simplify this discussion.

20

2.3. DATA STRUCTURES WITH OUR-OWN LIBRARIES � c© Steven & Felix, NUS

Figure 2.5: Calling findSet(i) to Determine the Representative Item (and Compressing the Path)

In Figure 2.5, we see what is happening when we call findSet(i). This function recursively

calls itself whenever pset[i] is not yet itself (‘i’). Then, once it finds the main representative item

(e.g. ‘x’) for that set, it will compress the path by saying pset[i] = x. Thus subsequent calls of

findSet(i) will be O(1). This simple heuristic strategy is aptly named as ‘Path Compression’.

In Figure 2.6, we illustrate another operation for this data structure, called isSameSet(i, j)

that simply calls findSet(i) and findSet(j) to check if both refer to the same representative

item. If yes, ‘i’ and ‘j’ belong to the same set, otherwise, they do not.

Our library implementation for Union-Find Disjoint Sets is shown below.

#define REP(i, a, b) \ // all codes involving REP uses this macro

for (int i = int(a); i <= int(b); i++)

vector<int> pset(1000); // 1000 is just an initial number, it is user-adjustable.

void initSet(int _size) { pset.resize(_size); REP (i, 0, _size - 1) pset[i] = i; }

int findSet(int i) { return (pset[i] == i) ? i : (pset[i] = findSet(pset[i])); }

void unionSet(int i, int j) { pset[findSet(i)] = findSet(j); }

bool isSameSet(int i, int j) { return findSet(i) == findSet(j); }

Figure 2.6: Calling isSameSet(i, j) to Determine if Both Items Belong to the Same Set

Exercise 1: There are two more queries commonly performed on the Union-Find Disjoint Sets data

structure: int numberOfSets() that returns the number of disjoint sets currently in the structure

and int sizeOfSet(int i) that returns the size of set that currently contains item i. Update

the codes shown in this section to support these two queries efficiently!

Exercise 2: In [4], there is a ‘union by rank’ heuristic to speed-up this data structure. Do you think

this heuristic will help speed up the data structure significantly? If yes, in which case(s)? Is there

any programming tricks to achieve similar effect without using this heuristic?

21

2.3. DATA STRUCTURES WITH OUR-OWN LIBRARIES � c© Steven & Felix, NUS

2.3.3 Segment Tree

In this subsection, we discuss another data structure which can efficiently answer dynamic range

queries. As a starting point, we discuss a problem of finding the index of the minimum element

in an array given a range: [i..j]. This is more commonly known as the Range Minimum Query

(RMQ). For example, given an array A of size 7 below, RMQ(1, 3) = 2, as the index 2 contains

the minimum element among A[1], A[2], and A[3]. To check your understanding of RMQ, verify

that on array A below, RMQ(3, 4) = 4, RMQ(0, 0) = 0, RMQ(0, 1) = 1, and RMQ(0, 6) = 5.

Values = 8 | 7 | 3 | 9 | 5 | 1 | 10

Array A = ---

Indices = 0 | 1 | 2 | 3 | 4 | 5 | 6

There are several ways to solve this RMQ. One of the trivial algorithm is to simply iterate the

array from index i to j and report the index with the minimum value. But this is O(n) per query.

When n is large, such algorithm maybe infeasible.

In this section, we solve the RMQ with Segment Tree: a binary tree similar to heap, but usually

not a complete binary tree. For the array A above, the segment tree is shown in Figure 2.7. The

root of this tree contains the full segment, from [0, N - 1]. And for each segment [l, r], we split them

into [l, (l + r) / 2] and [(l + r) / 2 + 1, r] until l = r. See the O(n log n) built_segment_tree

routine below. With segment tree ready, answering an RMQ can now be done in O(log n).

For example, we want to answer RMQ(1, 3). The execution in Figure 2.7 (red solid lines) is

as follows: From root [0, 6], we know that the answer for RMQ(1, 3) is on the left of vertex [0, 6]

as [0, 6] is still larger than the RMQ(1, 3), thus the stored min(imum) value of [0, 6] = 5 is not

appropriate as it is the min value over a larger segment [0, 6] than the RMQ(1, 3).

We move to the left segment [0, 3]. At vertex [0, 3], we have to search two sides as [0, 3] is still

larger than the RMQ(1, 3) and intersect both the left segment [0, 1] and the right segment [2, 3].

The right segment is [2, 3], which is inside the required RMQ(1, 3), so from the stored min

value inside this node, we know that RMQ(2,3) = 2. We do not need to traverse further down.

The left segment is [0, 1], which is not yet inside the RMQ(1, 3), so another split is necessary.

From [0, 1], we move right to segment [1, 1], which is now inside the RMQ(1, 3). Then, we return

the min value = 1 to the caller.

Back in segment [0, 3], we now know that RMQ(1, 1) = 1 and RMQ(2, 3) = 2. Because

A[RMQ(1, 1)] > A[RMQ(2, 3)] since A[1] = 7 and A[2] = 3, we know that RMQ(1, 3) = 2.

Figure 2.7: Segment Tree of Array A {8, 7, 3, 9, 5, 1, 10}

Let’s take a look at another example: RMQ(4, 6). The execution in Figure 2.7 (blue dashed line)

is as follows: We again start from the root [0, 6]. Since it is bigger than the query, we move right

22

2.3. DATA STRUCTURES WITH OUR-OWN LIBRARIES � c© Steven & Felix, NUS

to segment [4, 6]. Since this segment is exactly the RMQ(4, 6), we simply return the index of

minimum element that is stored in this node, which is 5. Thus RMQ(4, 6) = 5. We do not have to

traverse the unnecessary parts of the tree! In the worst case, we have two root-to-leaf paths which

is just O(log n). For example in RMQ(3, 4) = 4, we have one root-to-leaf path from [0, 6] to [3, 3]

and another root-to-leaf path from [0, 6] to [4, 4].

If the array A is static, then using Segment Tree to solve RMQ is an overkill as there exists

a Dynamic Programming (DP) solution that requires O(n log n) one-time pre-processing and O(1)

per RMQ. This DP solution will be discussed later in Section 3.4.3.

The Segment Tree becomes useful if array A is frequently updated. For example, if A[5] is now

changed from 1 to 100, then what we need to do is to update the leaf to root nodes which can be

done in O(log n). The DP solution requires another O(n log n) pre-processing to do the same.

Figure 2.8: Updating Array A to {8, 7, 3, 9, 5, 100, 10}. Only leaf-to-root nodes are affected.

Our library implementation for Segment Tree is shown below. The code shown here supports static

Range Minimum/Maximum/Sum queries (the dynamic update part is left as exercise). There are

of course other ways to implement segment tree, e.g. a more efficient version that only expands

the segments when needed.

#include <iostream>

#include <math.h>

#include <vector>

using namespace std;

// Segment Tree Library

// The segment tree is stored like a heap array

#define RANGE_SUM 0

#define RANGE_MIN 1

#define RANGE_MAX 2

vi segment_tree;

void init_segment_tree(int N) { // if original array size is N,

// the required segment_tree array length is 2*2^(floor(log2(N)) + 1);

int length = (int)(2 * pow(2.0, floor((log((double)N) / log(2.0)) + 1)));

segment_tree.resize(length, 0); // resize this vector and fill with 0

}

void build_segment_tree(int code, int A[], int node, int b, int e) {

if (b == e) { // as b == e, either one is fine

if (code == RANGE_SUM) segment_tree[node] = A[b]; // store value of this cell

else segment_tree[node] = b; // if RANGE_MIN/MAXIMUM, store index

}

23

2.3. DATA STRUCTURES WITH OUR-OWN LIBRARIES � c© Steven & Felix, NUS

else { // recursively compute the values in the left and right subtrees

int leftIdx = 2 * node, rightIdx = 2 * node + 1;

build_segment_tree(code, A, leftIdx , b , (b + e) / 2);

build_segment_tree(code, A, rightIdx, (b + e) / 2 + 1, e);

int lContent = segment_tree[leftIdx], rContent = segment_tree[rightIdx];

if (code == RANGE_SUM) // make this segment contains sum of left and right subtree

segment_tree[node] = lContent + rContent;

else { // (code == RANGE_MIN/MAXIMUM)

int lValue = A[lContent], rValue = A[rContent];

if (code == RANGE_MIN) segment_tree[node] = (lValue <= rValue) ? lContent : rContent;

else segment_tree[node] = (lValue >= rValue) ? lContent : rContent;

} } }

int query(int code, int A[], int node, int b, int e, int i, int j) {

if (i > e || j < b) return -1; // if the current interval does not intersect query interval

if (b >= i && e <= j) return segment_tree[node]; // if the current interval is inside query interval

// compute the minimum position in the left and right part of the interval

int p1 = query(code, A, 2 * node , b , (b + e) / 2, i, j);

int p2 = query(code, A, 2 * node + 1, (b + e) / 2 + 1, e , i, j);

// return the position where the overall minimum is

if (p1 == -1) return p2; // can happen if we try to access segment outside query

if (p2 == -1) return p1; // same as above

if (code == RANGE_SUM) return p1 + p2;

else if (code == RANGE_MIN) return (A[p1] <= A[p2]) ? p1 : p2;

else return (A[p1] >= A[p2]) ? p1 : p2;

}

int main() {

int A[] = {8,7,3,9,5,1,10};

init_segment_tree(7); build_segment_tree(RANGE_MIN, A, 1, 0, 6);

printf("%d\n", query(RANGE_MIN, A, 1, 0, 6, 1, 3)); // answer is index 2

return 0;

}

Exercise 1: Draw a segment tree of this array A = {10, 2, 47, 3, 7, 9, 1, 98, 21, 37} and answer

RMQ(1, 7) and RMQ(3, 8)!

Exercise 2: Using the same tree as in exercise 1 above, answer this Range Sum Query(i, j) (RSQ),

i.e. a sum from A[i] + A[i + 1] + ... + A[j]. What is RSQ(1, 7) and RSQ(3, 8)? Is this a good

approach to solve this problem? (See Section 3.4).

Exercise 3: The Segment Tree code shown above lacks update operation. Add the O(log n) update

function to update the value of a certain segment in the Segment Tree!

Programming exercises that use data structures with our own libraries:

• Graph (simple one, many more in Section 4)

1. UVa 291 - The House of Santa Claus (simple backtracking)

2. UVa 10928 - My Dear Neighbours (count ‘out degrees’)

24

2.4. CHAPTER NOTES c© Steven & Felix, NUS

• Union-Find Disjoint Sets

1. UVa 459 - Graph Connectivity (also solvable with ‘flood fill’ in Section 4.2)

2. UVa 793 - Network Connections (trivial)

3. UVa 912 - Live From Mars

4. UVa 10158 - War

5. UVa 10301 - Rings and Glue (with Computational Geometry, see Chapter 7)

6. UVa 10369 - Arctic Networks (also solveable with MST, see Section 4.4)

7. UVa 10505 - Montesco vs Capuleto

8. UVa 10583 - Ubiquitous Religions (count remaining disjoint sets after unions)

9. UVa 10608 - Friends (search set with largest element)

10. UVa 11503 - Virtual Friends (maintain set attribute (size) in representative item)

• Segment Tree

1. UVa 11235 - Frequent Values (Range Maximum Query)

2. UVa 11297 - Census (2-D Segment Tree/Quad Tree)

3. UVa 11402 - Ahoy, Pirates! (Requires updates to the Segment Tree)

4. LA 2191 - Potentiometers (Dhaka06)

5. LA 3294 - The Ultimate Bamboo Eater (Dhaka05) (2-D Segment Tree++)

6. LA 4108 - Skyline (Singapore07)

2.4 Chapter Notes

Basic data structures mentioned in Section 2.2 can be found in almost every data structure and

algorithm textbooks and references to their libraries are available online in:

http://www.cppreference.com and http://java.sun.com/javase/6/docs/api.

Extra references for data structures mentioned in Section 2.3 are as follow: For Graph data

structure, a good textbook is [21]. For Union-Find Disjoint Sets, see Chapter 21 of [4]. For Segment

Tree and other geometric-related data structures, see [6].

With more experience, and especially by looking at TopCoder’s codes, you will master more

tricks in using these data structures. This point is hard to teach. Thus, please spend some time to

explore the sample codes listed in this book.

The discussion about string-specific data structures (Suffix Tree and Suffix Array) is deferred

until Section 6.4. Yet, there are still many other data structures that we cannot cover in this book.

If you want to win a programming contest, mastering more than what we present in this book will

increase your chance to do better in contests, e.g. AVL Tree, Red Black Tree, Splay Tree

which are useful for certain contest problems where you need to implement and augment a balanced

BST; Fenwick (Binary Indexed) Tree which can be used to implement cumulative frequency

tables; Quad Tree for partitioning 2-D space; etc.

Notice that many of the efficient data structures shown in this book have the spirit of Divide

and Conquer (discussed in Section 3.2).

There are approximately 43 programming exercises discussed in this chapter.

25

Chapter 3

Problem Solving Paradigms

If all you have is a hammer, everything looks like a nail

— Abraham Maslow, 1962

This chapter highlights four problem solving paradigms commonly used to attack problems in programming

contests, namely Complete Search, Divide & Conquer, Greedy, and Dynamic Programming. Mastery of

all these problem solving paradigms will help contestants to attack each problem with the appropriate ‘tool’,

rather than ‘hammering’ every problem with brute-force solution... which is clearly not competitive. Our ad-

vice before you start reading: Do not just remember the solutions for the problems presented in this chapter,

but remember the way, the spirit of solving those problems!

3.1 Complete Search

Complete Search, also known as brute force or recursive backtracking, is a method for solving a

problem by searching (up to) the entire search space in bid to obtain the required solution.

In programming contests, a contestant should develop a Complete Search solution when there

is clearly no clever algorithm available (e.g. the problem of enumerating all permutations of

{1, 2, 3, .., N}, which clearly requires O(N !) operations) or when such clever algorithms exist, but

overkill, as the input size happens to be small (e.g. the problem of answering Range Minimum

Query as in Section 2.3.3 but on a static array with N ≤ 100 – solvable with O(N) loop).

In ICPC, Complete Search should be the first considered solution as it is usually easy to come

up with the solution and code/debug it. A bug-free Complete Search solution should never receive

Wrong Answer (WA) response in programming contests as it explores the entire search space.

However, many programming problems do have better-than-Complete-Search solutions. Thus a

Complete Search solution may receive a Time Limit Exceeded (TLE) verdict. With proper analysis,

you can determine which is the likely outcome (TLE versus AC) before attempting to code anything

(Table 1.4 in Section 1.2.2 is a good gauge). If Complete Search can likely pass the time limit,

then go ahead. This will then give you more time to work on the harder problems, where Complete

Search is too slow. In IOI, we usually need better problem solving techniques.

Sometimes, running Complete Search on small instances of a hard problem can give us some

patterns from the output that can be exploited to design faster algorithm. The Complete Search

solution can also act as a verifier for faster but non-trivial algorithms (but only on small instances).

26

3.1. COMPLETE SEARCH � c© Steven & Felix, NUS

In this section, we give two examples of this simple paradigm and provide a few tips to give

Complete Search solution a better chance to pass the required Time Limit.

3.1.1 Examples

We show two examples of Complete Search: one that is implemented iteratively and one that is

implemented recursively (backtracking). We also mention a few optimization tricks to make some

‘impossible’ cases become possible.

1. Iterative Complete Search: UVa 725 - Division

Abridged problem statement: Find and display all pairs of 5-digit numbers that between

them use the digits 0 through 9 once each, such that the first number divided by the second

is equal to an integer N , where 2 ≤ N ≤ 79. That is, abcde / fghij = N, where each letter

represents a different digit. The first digit of one of the numerals is allowed to be zero, e.g.

79546 / 01283 = 62; 94736 / 01528 = 62.

A quick analysis shows that fghij can only be from 01234 to 98765, which is ≈ 100K

possibilities. For each tried fghij, we can get abcde from fghij * N and then check if all

digits are different. 100K operations are small. Thus, iterative Complete Search is feasible.

Exercise 1: What is the advantage of iterating through all possible fghij and not abcde?

Exercise 2: Does a 10! algorithm that permutes abcdefghij work?

2. Recursive Backtracking: UVa 750 - 8 Queens Chess Problem

Abridged problem statement: In chess (with a standard 8x8 board), it is possible to place

eight queens on the board so that no queen can be taken by any other. Write a program that

will determine all such possible arrangements given the initial position of one of the queens

(i.e. coordinate (a, b) in the board must contain a queen).

A näıve solution tries all 88 ≈ 17M possible arrangements of 8 queens in an 8x8 board,

putting each queen in each possible cell and filter the invalid ones. Complete Search like this

receives Time Limit Exceeded (TLE) response. We should reduce the search space more.

We know that no two queens can share the same column, thus we can simplify the problem

to finding valid permutation of 8! row positions row[i] stores the row position of queen

in column i. Example: row = {2, 4, 6, 8, 3, 1, 7, 5} as in Figure 3.1 is one of the

solution for this problem; row[1] = 2 implies that queen in column 1 is placed in row 2, and

so on (the index starts from 1 in this example). Modeled this way, the search space goes

down from 88 = 17M to 8! = 40K.

We also know that no two queens can share any of the two diagonals. Assuming queen A is

at (i, j) and queen B is at (k, l), then they attack each other iff abs(i - k) == abs(j - l).

Go ahead and verify this formula by placing two queens randomly but on the same diagonal.

A recursive backtracking solution will then place the queens one by one from column 1 to 8,

obeying the two constraints above. Finally, if a candidate solution is found, check if one of

the queen satisfies the input constrain, i.e. row[b] == a. This solution is Accepted.

We provide our code in the next page below. If you have never code a recursive backtracking

solution before, please scrutinize it and perhaps re-code it using your own coding style. For

example, you may want to use C++ STL <algorithm>: next permutation instead.

27

3.1. COMPLETE SEARCH � c© Steven & Felix, NUS

Figure 3.1: One Solution for 8-Queens Problem: {2, 4, 6, 8, 3, 1, 7, 5}

/* 8 Queens Chess Problem */

#include <iostream>

#include <string.h>

#include <math.h>

using namespace std;

int x[9], TC, a, b, lineCounter; // it is ok to use global variables in competitive programming

bool place(int queen, int row) {

for (int prev = 1; prev <= queen - 1; prev++) // check previously placed queens

if (x[prev] == row || (abs(x[prev] - row) == abs(prev - queen)))

return false; // an infeasible solution if share same row or same diagonal

return true;

}

void NQueens(int queen) {

for (int row = 1; row <= 8; row++)

if (place(queen, row)) { // if can place this queen at this row?

x[queen] = row; // put this queen in this row

if (queen == 8 && x[b] == a) { // a candidate solution & (a, b) has 1 queen

printf("%2d %d", ++lineCounter, x[1]);

for (int j = 2; j <= 8; j++) printf(" %d", x[j]);

printf("\n");

}

else

NQueens(queen + 1); // recursively try next position

} }

int main() {

scanf("%d", &TC);

while (TC--) {

scanf("%d %d", &a, &b);

memset(x, 0, sizeof x); lineCounter = 0;

printf("SOLN COLUMN\n");

printf(" # 1 2 3 4 5 6 7 8\n\n");

NQueens(1); // generate all possible 8! candidate solutions

if (TC) printf("\n");

}

return 0;

}

28

3.1. COMPLETE SEARCH � c© Steven & Felix, NUS

3.1.2 Tips

The biggest gamble in writing a Complete Search solution is whether it will be able to pass the

Time Limit. If it is 1 minute and your program currently runs in 1 minute 5 seconds, you may

want to tweak the ‘critical code’1 of your program first rather than painfully redo the problem with

a faster algorithm – which may not be trivial to design.

Here are some tips that you may want to consider when designing your solution, especially a

Complete Search solution, to give it a higher chance for passing the Time Limit.

Tip 1: Generating versus Filtering

Programs that generate lots of candidate solutions and then choose the ones that are correct

(or remove the incorrect ones) are called ‘filters’ – recall the näıve 8-queens solver with 88 time

complexity. Those that hone in exactly to the correct answer without any false starts are called

‘generators’ – recall the improved 8-queens solver with 8! complexity plus diagonal checks.

Generally, filters are easier to code but run slower. Do the math to see if a filter is good enough

or if you need to create a generator.

Tip 2: Prune Infeasible Search Space Early

In generating solutions (see tip 1 above), we may encounter a partial solution that will never lead

to a full solution. We can prune the search there and explore other parts. For example, see the

diagonal check in 8-queens solution above. Suppose we have placed a queen at row[1] = 2, then

placing another queen at row[2] = 1 or row[2] = 3 will cause a diagonal conflict and placing

another queen at row[2] = 2 will cause a row conflict. Continuing from any of these branches will

never lead to a valid solution. Thus we can prune these branches right at this juncture, concentrate

on only valid positions of row[2] = {4, 5, 6, 7, 8}, thus saving overall runtime.

Tip 3: Utilize Symmetries

Some problems have symmetries and we should try to exploit symmetries to reduce execution time!

In the 8-queens problem, there are 92 solutions but there are only 12 unique (or fundamental)

solutions as there are rotations and reflections symmetries in this problem [35]. You can utilize this

fact by only generating the 12 unique solutions and, if needed, generate the whole 92 by rotating

and reflecting these 12 unique solutions.

Tip 4: Pre-Computation a.k.a. Pre-Calculation

Sometimes it is helpful to generate tables or other data structures that enable the fastest possible

lookup of a result - prior to the execution of the program itself. This is called Pre-Computation,

in which one trades memory/space for time.

Again using the 8-queens problem above. If we know that there are only 92 solutions, then

we can create a 2-dimensional array int solution[92][8] and then fill it with all 92 valid per-

mutations of 8 queens row positions! That’s it, we create a generator program (which takes some

runtime) to fill this 2-D array solution, but afterwards, we generate a new program and submit

the code that just prints out the correct permutations with 1 queen at (a, b) (very fast).

1It is said that every program is doing most of its task in only about 10% of the code – the critical code.

29

3.1. COMPLETE SEARCH � c© Steven & Felix, NUS

Tip 5: Try Solving the Problem Backwards

Surprisingly, some contest problems seem far easier when they are solved backwards than when

they are solved using a frontal attack. Be on the lookout for processing data in reverse order or

building an attack that looks at the data in some order other than the obvious.

This tip is best shown using an example: UVa 10360 - Rat Attack. Abridged problem descrip-

tion: Imagine a 2-D array (up to 1024 x 1024) containing rats. There are n ≤ 20000 rats at some

cells, determine which cell (x, y) should be gas-bombed so that the number of rats killed in square

box (x - d, y - d) to (x + d, y + d) is maximized. The value d is the power of the gas-bomb (d is

up to 50), see Figure 3.2.

Figure 3.2: UVa 10360 - Rat Attack Illustration with d = 1

First option is to attack this problem frontally: Try bombing each of the 10242 cells and see which

one is the most effective. For each bombed cell (x, y), we need to do O(d2) scans to count the

number of rats killed within the square-bombing radius. For the worst case when the array has

size 10242 and d = 50, this takes 10242 × 502 = 2621M operations. Clearly TLE!

Second option is to attack this problem backwards: Create an array int killed[1024][1024].

For each n rat population at coordinate (x, y), add the value of array killed[i][j] with the

number of rats in (x, y) that will be killed if a bomb is placed in (i, j) and (i, j) is within the

square-bombing radius (i.e. |i − x| ≤ d and |j − y| ≤ d). This pre-processing takes O(n × d2)

operations. Then, to determine the most optimal bombing position, we find the coordinate of the

highest entry in array killed, which can be done in O(n2) operations. This backwards approach

only requires 20000 × 502 + 200002 = 51M operations for the worst test case (n = 20000, d = 50)

and approximately 51 times faster than the frontal attack!

Tip 6: Optimizing Source Code

There are many tricks that you can use to optimize your code. Understanding computer hardware,

especially I/O, memory, and cache behavior, can help you design a better program. Some examples:

1. Use the faster C-style scanf/printf rather than cin/cout.

2. Use the expected O(n log n) but cache-friendly quicksort (built-in in C++ STL sort as part

of ‘introsort’) rather than the true O(n log n) but not (cache) memory friendly mergesort.

3. Access a 2-D array in a row major fashion (row by row) rather than column by column.

4. Bitwise manipulation on integer is faster than using an array of bits (see Section 3.4.3), etc.

5. Use STL <bitset> rather than vector<bool> for Sieve of Eratosthenes (see Section 5.3.1).

30

3.1. COMPLETE SEARCH � c© Steven & Felix, NUS

6. Declare a bulky data structure just once by setting it to have global scope, so you do not

have to pass the structure as function arguments.

7. Allocate memory just once, according to the largest possible input in the problem description,

rather than re-allocating it for every test case in a multiple-input problem.

Browse the Internet or reference books to find more information on how to speed up your code.

Tip 7: Use Better Data Structure & Algorithm :)

No kidding. Using better data structures and algorithms always outperforms any optimization tips

mentioned in Tips 1-6 above. If all else fails, abandon Complete Search approach.

Programming Exercises solvable using Complete Search:

• Iterative

1. UVa 154 - Recyling (try all combinations)

2. UVa 441 - Lotto (6 nested loops!)

3. UVa 639 - Don’t Get Rooked (generate 216 possible combinations, prune invalid ones)

4. UVa 725 - Division (elaborated in this section)

5. UVa 10360 - Rat Attack (this problem is also solvable using 10242 DP range sum)

6. UVa 10662 - The Wedding (3 nested loops!)

7. UVa 11242 - Tour de France (iterative complete search + sorting)

8. UVa 11804 - Argentina (5 nested loops!)

• Recursive Backtracking

1. UVa 193 - Graph Coloring (Maximum Independent Set)

2. UVa 222 - Budget Travel (input not large)

3. UVa 524 - Prime Ring Problem (also see Section 5.3.1)

4. UVa 624 - CD (input size is small, use backtracking; also solve-able with DP)

5. UVa 628 - Passwords (backtracking)

6. UVa 729 - The Hamming Distance Problem (backtracking)

7. UVa 750 - 8 Queens Chess Problem (solution already shown in this section)

8. UVa 10285 - Longest Run on a Snowboard (backtracking, also solve-able with DP)

9. UVa 10496 - Collecting Beepers (small TSP instance)

10. LA 4793 - Robots on Ice (World Finals Harbin10, recommended problem for practice)

Problem I - ‘Robots on Ice’ in the recent ACM ICPC World Final 2010 can be viewed as a ‘tough

test on pruning strategy’. The problem is simple: Given an M x N board with 3 check-in points

{A, B, C}, find a Hamiltonian path of length (M x N) from coordinate (0, 0) to coordinate

(0, 1). This Hamiltonian path must hit check point {A, B, C} at one-fourth, one-half, and

three-fourths of the way through its tour, respectively. Constraints: 2 ≤ M,N ≤ 8.

A näıve recursive backtracking algorithm will get TLE. To speed up, we must prune the search

space if: 1). it does not hit the appropriate target check point at 1/4, 1/2, or 3/4 distance; 2).

it hits target check point earlier than the target time; 3). it will not be able to reach the next

check point on time from the current position; 4). it will not be able to reach final point (0, 1)

as the current path blocks the way. These 4 pruning strategies are sufficient to solve LA 4793.

31

3.2. DIVIDE AND CONQUER � c© Steven & Felix, NUS

3.2 Divide and Conquer

Divide and Conquer (abbreviated as D&C) is a problem solving paradigm where we try to make a

problem simpler by ‘dividing’ it into smaller parts and ‘conquering’ them. The steps:

1. Divide the original problem into sub-problems – usually by half or nearly half,

2. Find (sub-)solutions for each of these sub-problems – which are now easier,

3. If needed, combine the sub-solutions to produce a complete solution for the main problem.

We have seen this D&C paradigm in previous chapters in this book: various sorting algorithms like

Quick Sort, Merge Sort, Heap Sort, and Binary Search in Section 2.2.1 utilize this paradigm. The

way data is organized in Binary Search Tree, Heap, and Segment Tree in Section 2.2.2 & 2.3.3, also

has the spirit of Divide & Conquer.

3.2.1 Interesting Usages of Binary Search

In this section, we discuss the spirit of D&C paradigm around a well-known Binary Search algo-

rithm. We still classify Binary Search as ‘Divide’ and Conquer paradigm although some references

(e.g. [14]) suggest that it should be classified as ‘Decrease (by-half)’ and Conquer as it does not

actually ‘combine’ the result. We highlight this algorithm because many contestants know it, but

not many are aware that it can be used in other ways than its ordinary usage.

Binary Search: The Ordinary Usage

Recall: The ordinary usage of Binary Search is for searching an item in a static sorted array. We

check the middle portion of the sorted array if it is what we are looking for. If it is or there is

no more item to search, we stop. Otherwise, we decide whether the answer is on the left or right

portion of the sorted array. As the size of search space is halved (binary) after each query, the

complexity of this algorithm is O(log n). In Section 2.2.1, we have seen that this algorithm has

library routines, e.g. C++ STL <algorithm>: lower bound, Java Collections.binarySearch.

This is not the only way to use and apply binary search. The pre-requisite to run binary search

algorithm – a static sorted array (or vector) – can also be found in other uncommon data structure,

as in the root-to-leaf path on a structured tree below.

Binary Search on Uncommon Data Structure (Thailand ICPC National Contest 2009)

Problem in short: given a weighted (family) tree of N vertices up to N ≤ 80K with a special trait:

vertex values are increasing from root to leaves. Find the ancestor vertex closest to root from a

starting vertex v that has weight at least P . There are up to Q ≤ 20K such queries.

Näıve solution is to do this linear O(N) scan per query: Start from a given vertex v, then move

up the family tree until we hit the first ancestor with value < P . In overall, as there are Q queries,

this approach runs in O(QN) and will get TLE as N ≤ 80K and Q ≤ 20K.

A better solution is to store all the 20K queries first. Then traverse the family tree just once

from root using O(N) Depth First Search (DFS) algorithm (Section 4.2). Search for some non-

existent value so that DFS explores the entire tree, building a partial root-to-leaf sorted array as it

goes – this is because the vertices in the root-to-leaf path have increasing weights. Then, for each

32

3.2. DIVIDE AND CONQUER � c© Steven & Felix, NUS

vertex asked in query, perform a O(logN) binary search, i.e. lower bound, along the current

path from root to that vertex to get ancestor closest to root with weight at least P . Finally, do

an O(Q) post-processing to output the results. The overall time complexity of this approach is

O(Q logN), which is now manageable.

Bisection Method

What we have seen so far are the usage of binary search in finding items in a static sorted array.

However, the binary search principle can also be used to find the root of a function that may be

difficult to compute mathematically.

Sample problem: You want to buy a car using loan and want to pay in monthly installments of

d dollars for m months. Suppose the value of the car is originally v dollars and the bank charges

i% interest rate for every unpaid money at the end of each month. What is the amount of money

d that you must pay per month (rounded to 2 digits after decimal point)?

Suppose d = 576, m = 2, v = 1000, and i = 10%. After one month, your loan becomes 1000 ×
(1.1) - 576 = 524. After two months, your loan becomes 524 × (1.1) - 576 ≈ 0.

But if we are only given m = 2, v = 1000, and i = 10%, how to determine that d = 576? In

another words, find the root d such that loan payment function f(d, 2, 1000, 10) ≈ 0. The easy

way is to run the bisection method2. We pick a reasonable range as the starting point. In this

case, we want to find d within range [a . . . b]. a = 1 as we have to pay something (at least d = 1

dollar). b = (1 + i) × v as the earliest we can complete the payment is m = 1, if we pay exactly

(1 + i%)× v = (1 × 10) × 1000 = 1100 dollars after one month. Then, we apply bisection method

to obtain d as follows:

• If we pay d = (a + b)/2 = (1 + 1100)/2 = 550.5 dollars per month, then we undershoot by

53.95 dollars after two months, so we know that we must increase the monthly payment.

• If we pay d = (550.5 + 1100)/2 = 825.25 dollars per month, then we overshoot by 523.025

dollars after two months, so we know that we must decrease the payment.

• If we pay d = (550.5+825.25)/2 = 687.875 dollars per month, then we overshoot by 234.5375

dollars after two months, so we know that we must decrease the payment.

• ... few logarithmic iterations after, to be precise, after O(log2((b − a)/ε)) iterations where ε

is the amount of error that we can tolerate.

• Finally, if we pay d = 576.190476... dollars per month, then we manage to finish the payment

(the error is now less than ε) after two months, so we know that d = 576 is the answer.

For bisection method to work3, we must ensure that the function values of the two extreme points

in the initial Real range [a . . . b], i.e. f(a) and f(b) have opposite signs (true in the problem above).

Bisection method in this example only takes log2 1099/ε tries. Using a small ε = 1e-9, this is just

≈ 40 tries. Even if we use an even smaller ε = 1e-15, we still just need ≈ 60 tries4. Bisection

method is more efficient compared to linearly trying each possible value of d = [1..1100]/ε.

2We use the term ‘binary search principle’ as a divide and conquer technique that involve halving the range
of possible answer. We use the term ‘binary search algorithm’ (finding index of certain item in sorted array) and
‘bisection method’ (finding root of a function) as instances of this principle.

3Note that the requirement of bisection method (which uses binary search principle) is slightly different from the
more well-known binary search algorithm which needs a sorted array.

4Thus some competitive programmers choose to do ‘loop 100 times’ which guarantees termination instead of
testing whether the error is now less than ε as some floating point errors may lead to endless loop.

33

3.2. DIVIDE AND CONQUER � c© Steven & Felix, NUS

Binary Search the Answer

Binary Search ‘the Answer’ is another problem solving strategy that can be quite powerful. This

strategy is shown using UVa 714 - Copying Books below.

In this problem, you are given m books numbered 1, 2, . . . ,m that may have different number

of pages (p1, p2, . . . , pm). You want to make one copy of each of them. Your task is to divide these

books among k scribes, k ≤ m. Each book can be assigned to a single scriber only, and every

scriber must get a continuous sequence of books. That means, there exists an increasing succession

of numbers 0 = b0 < b1 < b2, . . . < bk−1 ≤ bk = m such that i-th scriber gets a sequence of

books with numbers between bi−1 + 1 and bi. The time needed to make a copy of all the books is

determined by the scriber who was assigned the most work. The task is to minimize the maximum

number of pages assigned to a single scriber.

There exist Dynamic Programming solution for this problem, but this problem can already be

solved by guessing the answer in binary search fashion! Suppose m = 9, k = 3 and p1, p2, . . . , p9

are 100, 200, 300, 400, 500, 600, 700, 800, and 900, respectively.

If we guess ans = 1000, then the problem becomes ‘simpler’, i.e. if the scriber with the most

work can only copy up to 1000 pages, can this problem be solved? The answer is ‘no’. We can

greedily assign the jobs as: {100, 200, 300, 400} for scribe 1, {500} for scribe 2, {600} for scribe 3,

but we have 3 books {700, 800, 900} unassigned. The answer must be at least 1000.

If we guess ans = 2000, then we greedily assign the jobs as: {100, 200, 300, 400, 500} for scribe

1, {600, 700} for scribe 2, and {800, 900} for scribe 3. We still have some slacks, i.e. scribe 1, 2,

and 3 still have {500, 700, 300} unused potential. The answer must be at most 2000.

This ans is binary-searchable between lo = 1 (1 page) and hi = p1 + p2 + . . .+ pm (all pages).

Programming Exercises for problems solvable using Divide and Conquer:

1. UVa 679 - Dropping Balls (like Binary Search)

2. UVa 714 - Copying Books (Binary Search + Greedy)

3. UVa 957 - Popes (Complete Search + Binary Search: upper bound)

4. UVa 10077 - The Stern-Brocot Number System (Binary Search)

5. UVa 10341 - Solve It (Bisection Method)

6. UVa 10369 - Arctic Networks (solvable using Kruskal’s for MST too – Section 4.4)

7. UVa 10474 - Where is the Marble?

8. UVa 10611 - Playboy Chimp (Binary Search)

9. UVa 11262 - Weird Fence (Binary Search + Bipartite Matching, see Section 4.9.3)

10. LA 2565 - Calling Extraterrestrial Intelligence Again (Kanazawa02) (BSearch + Math)

11. LA 2949 - Elevator Stopping Plan (Guangzhou03) (Binary Search + Greedy)

12. LA 3795 - Against Mammoths (Tehran06)

13. LA 4445 - A Careful Approach (Complete Search + Bisection Method + Greedy)

14. IOI 2006 - Joining Paths

15. IOI 2009 - Mecho (Binary Search + BFS)

16. My Ancestor - Thailand ICPC National Contest 2009 (Problem set by: Felix Halim)

17. See Section 7.5 for ‘Divide & Conquer for Geometry Problems’

34

3.3. GREEDY � c© Steven & Felix, NUS

3.3 Greedy

An algorithm is said to be greedy if it makes locally optimal choice at each step with the hope of

finding the optimal solution. For some cases, greedy works - the solution code becomes short and

runs efficiently. But for many others, it does not. As discussed in [4], a problem must exhibit two

things in order for a greedy algorithm to work for it:

1. It has optimal sub-structures.

Optimal solution to the problem contains optimal solutions to the sub-problems.

2. It has a greedy property (remark: hard to prove its correctness!).

If we make a choice that seems best at the moment and solve the remaining subproblems

later, we still reach optimal solution. We never have to reconsider our previous choices.

3.3.1 Classical Example

Suppose we have a large number of coins with different denominations, i.e. 25, 10, 5, and 1 cents.

We want to make change with the least number of coins used. The following greedy algorithm

works for this set of denominations of this problem: Keep using the largest denomination of coin

which is not greater than the remaining amount to be made. Example: if the denominations are

{25, 10, 5, 1} cents and we want to make a change of 42 cents, we can do: 42-25 = 17 → 17-10 =

7 → 7-5 = 2 → 2-1 = 1 → 1-1 = 0, of total 5 coins. This is optimal.

The coin changing example above has the two ingredients for a successful greedy algorithm:

1. It has optimal sub-structures.

We have seen that in the original problem to make 42 cents, we have to use 25+10+5+1+1.

This is an optimal 5 coins solution to the original problem!

Now, the optimal solutions to its sub-problems are contained in this 5 coins solution, i.e.

a. To make 17 cents, we have to use 10+5+1+1 (4 coins),

b. To make 7 cents, we have to use 5+1+1 (3 coins), etc

2. It has a greedy property.

Given every amount V , we greedily subtract it with the largest denomination of coin which

is not greater than this amount V . It can be proven (not shown here for brevity) that using

other strategy than this will not lead to optimal solution.

However, this greedy algorithm does not work for all sets of coin denominations, e.g. {1, 3, 4}
cents. To make 6 cents with that set, a greedy algorithm would choose 3 coins {4, 1, 1} instead of

the optimal solution using 2 coins {3, 3}. This problem is revisited later in Section 3.4.2.

There are many other classical examples of greedy algorithms in algorithm textbooks, for ex-

ample: Kruskal’s for Minimum Spanning Tree (MST) problem – Section 4.4, Dijkstra’s for Single-

Source Shortest Paths (SSSP) problem – Section 4.5, Greedy Activity Selection Problem [4], Huff-

man Codes [4], etc.

3.3.2 Non Classical Example

Today’s contest problems usually do not ask for solution of trivial and classical greedy problems.

Instead, we are presented with novel ones that requires creativity, like the one shown below.

35

3.3. GREEDY � c© Steven & Felix, NUS

UVa 410 - Station Balance

Given 1 ≤ C ≤ 5 chambers which can store 0, 1, or 2 specimens, 1 ≤ S ≤ 2C specimens, and M :

a list of mass of the S specimens, determine in which chamber we should store each specimen in

order to minimize IMBALANCE. See Figure 3.3 for visual explanation.

A = (
∑S

j=1Mj)/C, i.e. A is the average of all mass over C chambers.

IMBALANCE =
∑C

i=1 |Xi −A|, i.e. sum of differences between the mass in each chamber w.r.t A.

where Xi is the total mass of specimens in chamber i.

Figure 3.3: Visualization of UVa 410 - Station Balance

This problem can be solved using a greedy algorithm. But first, we have to make several observa-

tions. If there exists an empty chamber, at least one chamber with 2 specimens must be moved to

this empty chamber! Otherwise the empty chambers contribute too much to IMBALANCE! See

Figure 3.4.

Figure 3.4: UVa 410 - Observation 1

Next observation: If S > C, then S−C specimens must be paired with one other specimen already

in some chambers. The Pigeonhole principle! See Figure 3.5.

Figure 3.5: UVa 410 - Observation 2

Now, the key insight that can simplify the problem is this: If S < 2C, add dummy 2C−S specimens

with mass 0. For example, C = 3, S = 4, M = {5, 1, 2, 7} → C = 3, S = 6,M = {5, 1, 2, 7, 0, 0}.
Then, sort these specimens based on their mass such that M1 ≤ M2 ≤ . . . ≤ M2C−1 ≤ M2C . In

this example, M = {5, 1, 2, 7, 0, 0} → {0, 0, 1, 2, 5, 7}.

36

3.3. GREEDY � c© Steven & Felix, NUS

By adding dummy specimens and then sorting them, a greedy strategy ‘appears’. We can now:

Pair the specimens with masses M1&M2C and put them in chamber 1, then

Pair the specimens with masses M2&M2C−1 and put them in chamber 2, and so on . . .

This greedy algorithm – known as ‘Load Balancing’ – works! See Figure 3.6.

Figure 3.6: UVa 410 - Greedy Solution

To come up with this way of thinking is hard to teach but can be gained from experience! One tip

from this example: If no obvious greedy strategy seen, try to sort the data first or introduce some

tweaks and see if a greedy strategy emerges.

3.3.3 Remarks About Greedy Algorithm in Programming Contests

Using Greedy solutions in programming contests is usually risky. A greedy solution normally will

not encounter TLE response, as it is lightweight, but tends to get WA response. Proving that

a certain problem has optimal sub-structure and greedy property in contest time may be time

consuming, so a competitive programmer usually do this:

He will look at the input size. If it is ‘small enough’ for the time complexity of either Complete

Search or Dynamic Programming (see Section 3.4), he will use one of these approaches as both will

ensure correct answer. He will only use Greedy solution if he knows for sure that the input size

given in the problem is too large for his best Complete Search or DP solution.

Having said that, it is quite true that many problem setters nowadays set the input size of such

can-use-greedy-algorithm-or-not-problems to be in some reasonable range so contestants cannot

use the input size to quickly determine the required algorithm!

Programming Exercises solvable using Greedy (hints omitted):

1. UVa 410 - Station Balance (elaborated in this section)

2. UVa 10020 - Minimal Coverage

3. UVa 10340 - All in All

4. UVa 10440 - Ferry Loading II

5. UVa 10670 - Work Reduction

6. UVa 10763 - Foreign Exchange

7. UVa 11054 - Wine Trading in Gergovia

8. UVa 11292 - Dragon of Loowater

9. UVa 11369 - Shopaholic

37

3.3. GREEDY � c© Steven & Felix, NUS

In this section, we want to highlight another problem solving trick called: Decomposition!

While there are only ‘few’ basic algorithms used in contest problems (most of them are covered

in this book), harder problems may require a combination of two (or more) algorithms for their

solution. For such problems, try to decompose parts of the problems so that you can solve

the different parts independently. We illustrate this decomposition technique using a recent

top-level programming problems that combines three problem solving paradigms that we have

just learned: Complete Search, Divide & Conquer, and Greedy!

ACM ICPC World Final 2009 - Problem A - A Careful Approach

You are given a scenario of airplane landings. There are 2 ≤ n ≤ 8 airplanes in the scenario.

Each airplane has a time window during which it can safely land. This time window is specified

by two integers ai, bi, which give the beginning and end of a closed interval [ai, bi] during which

the i-th plane can land safely. The numbers ai and bi are specified in minutes and satisfy

0 ≤ ai ≤ bi ≤ 1440. In this problem, plane landing time is negligible. Then, your task is to:

1. Compute an order for landing all airplanes that respects these time windows.

HINT: order = permutation = Complete Search?

2. Furthermore, the airplane landings should be stretched out as much as possible so that the

minimum achievable time gap between successive landings is as large as possible. For example,

if three airplanes land at 10:00am, 10:05am, and 10:15am, then the smallest gap is five minutes,

which occurs between the first two airplanes. Not all gaps have to be the same, but the smallest

gap should be as large as possible!

HINT: Is this similar to ‘greedy activity selection’ problem [4]?

3. Print the answer split into minutes and seconds, rounded to the closest second.

See Figure 3.7 for illustration: line = the time window of a plane; star = its landing schedule.

Figure 3.7: Illustration for ACM ICPC WF2009 - A - A Careful Approach

Solution:

Since the number of planes is at most 8, an optimal solution can be found by simply trying all

8! = 40320 possible orders for the planes to land. This is the Complete Search portion of the

problem which can be easily solved using C++ STL next permutation.

Now, for each specific landing order, we want to know the largest possible landing window.

Suppose we use a certain window length L. We can greedily check whether this L is feasible

by forcing the first plane to land as soon as possible and the subsequent planes to land in

max(a[that plane], previous landing time + L). This is a Greedy Algorithm.

A window length L that is too long/short will overshoot/undershoot b[last plane], so we

have to decrease/increase L. We can binary search the answer L – Divide & Conquer. As we

only want the answer rounded to nearest integer, stopping binary search when error ε ≤ 1e-3 is

enough. For more details, please study our AC source code shown on the next page.

38

3.3. GREEDY � c© Steven & Felix, NUS

/* World Final 2009, A - A Careful Approach, LA 4445 (Accepted) */

#include <algorithm>

#include <cmath>

#include <stdio.h>

using namespace std;

int i, n, caseNo = 1, order[8];

double a[8], b[8], timeGap, maxTimeGap; // timeGap is the variable L mentioned in text

double greedyLanding() { // with certain landing order, and certain timeGap,

// try landing those planes and see what is the gap to b[order[n - 1]]

double lastLanding = a[order[0]]; // greedy, first aircraft lands immediately

for (i = 1; i < n; i++) { // for the other aircrafts

double targetLandingTime = lastLanding + timeGap;

if (targetLandingTime <= b[order[i]])

// this aircraft can land, greedily choose max of a[order[i]] or targetLandingTime

lastLanding = max(a[order[i]], targetLandingTime);

else

return 1; // returning positive value will force binary search to reduce timeGap

}

// returning negative value will force binary search to increase timeGap

return lastLanding - b[order[n - 1]];

}

int main() {

while (scanf("%d", &n), n) { // 2 <= n <= 8

for (i = 0; i < n; i++) {

scanf("%lf %lf", &a[i], &b[i]); // [ai, bi] is the interval where plane i can land safely

a[i] *= 60; b[i] *= 60; // originally in minutes, convert to seconds

order[i] = i;

}

maxTimeGap = -1; // variable to be searched for

do { // permute plane landing order, 8!

double lowVal = 0, highVal = 86400; // min 0s, max 1 day = 86400s

timeGap = -1; // start with infeasible solution

// This example code uses ‘double’ data type. This is actually not a good practice

// Some other programmers avoid the test below and simply use ‘loop 100 times (precise enough)’

while (fabs(lowVal - highVal) >= 1e-3) { // binary search timeGap, ERROR = 1e-3 is OK here

timeGap = (lowVal + highVal) / 2.0; // we just want the answer to be rounded to nearest int

double retVal = greedyLanding(); // round down first

if (retVal <= 1e-2) // must increase timeGap

lowVal = timeGap;

else // if (retVal > 0) // infeasible, must decrease timeGap

highVal = timeGap;

}

maxTimeGap = max(maxTimeGap, timeGap); // get the max over all permutations

}

while (next_permutation(order, order + n)); // keep trying all permutations

// another way for rounding is to use printf format string: %.0lf:%0.2lf

maxTimeGap = (int)(maxTimeGap + 0.5); // round to nearest second

printf("Case %d: %d:%0.2d\n", caseNo++, (int)(maxTimeGap / 60), (int)maxTimeGap % 60);

} } // return 0;

// Challenge: rewrite this code to avoid double!

39

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

3.4 Dynamic Programming

Dynamic Programming (from now on abbreviated as DP) is perhaps the most challenging problem

solving paradigm among the four paradigms discussed in this chapter. Therefore, make sure that

you have mastered the material mentioned in the previous chapters before continuing. Plus, get

yourself ready to see lots of recursions and recurrence relations!

3.4.1 DP Illustration Using UVa 11450 - Wedding Shopping

Abridged problem statement: Given different models for each garment (e.g. 3 shirts, 2 belts, 4

shoes, ...), buy one model of each garment. As the budget is limited, we cannot spend more money

than the budget, but we want to spend the maximum possible. But it is also possible that we

cannot buy one model of each garment due to that small amount of budget.

The input consist of two integers 1 ≤ M ≤ 200 and 1 ≤ C ≤ 20, where M is the budget and C is

the number of garments that you have to buy. Then, there are information of the C garments. For

a garment id ∈ [0 . . . C-1], we know an integer 1 ≤ K ≤ 20 which indicates the number of different

models for that garment id, followed by K integers indicating the price of each model ∈ [1 . . . K]

of that garment id.

The output should consist of one integer that indicates the maximum amount of money necessary

to buy one element of each garment without exceeding the initial amount of money. If there is no

solution, print “no solution”.

For example, if the input is like this (test case A):

M = 20, C = 3

3 models of garment id 0 → 6 4 8 // see that the prices are not sorted in input

2 models of garment id 1 → 5 10

4 models of garment id 2 → 1 5 3 5

Then the answer is 19, which may come from buying the underlined items (8+10+1).

Note that this solution is not unique, as we also have (6+10+3) and (4+10+5).

However, if the input is like this (test case B):

M = 9 (very limited budget), C = 3

3 models of garment id 0 → 6 4 8

2 models of garment id 1 → 5 10

4 models of garment id 2 → 1 5 3 5

Then the answer is “no solution” as buying all the cheapest models (4+5+1) = 10 is still > M .

Approach 1: Complete Search (Time Limit Exceeded)

First, let’s see if Complete Search (backtracking) can solve this problem: Start with money_left = M

and garment_id = 0. Try all possible models in that garment_id = 0 (max 20 models). If model

i is chosen, then subtract money_left with model i’s price, and then recursively do the same

process to garment_id = 1 (also can go up to 20 models), etc. Stop if the model for the last

garment_id = C - 1 has been chosen. If money_left < 0 before we reach the last garment_id,

prune this partial solution. Among all valid combinations, pick one that makes money_left as

close to 0 as possible yet still ≥ 0. This maximizes the money spent, which is (M - money_left).

40

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

We can formally define these Complete Search recurrences:

1. if money_left < 0 (i.e. money goes negative),

shop(money_left, garment_id) = INVALID (in practice, we can return a large negative value)

2. if a model from the last garment_id has been bought (i.e. a candidate solution),

shop(money_left, garment_id) = M - money_left (this is the actual money spent)

3. in general case, for all model in [1 . . . K] of current garment_id

shop(money_left, garment_id) =

max(shop(money_left - price[garment_id][model], garment_id + 1))

We want to maximize this value (Recall that invalid ones have large negative value)

This solution works correctly, but very slow! Let’s analyze its worst case time complexity. In the

largest test case, garment id 0 have up to 20 choices; garment id 1 also have up to 20 choices; ...;

and the last garment id 19 also have up to 20 choices. Therefore, Complete Search like this runs

in 20× 20× ...× 20 of total 20 times in the worst case, i.e. 2020 = a very very large number. If

we only know Complete Search, there is no way we can solve this problem.

Approach 2: Greedy (Wrong Answer)

Since we want to maximize the budget spent, why don’t we take the most expensive model in each

garment_id which still fits our budget? For example in test case A above, we choose the most

expensive model 3 of garment_id = 0 with cost 8 (money_left = 20-8 = 12), then choose the

most expensive model 2 of garment_id = 1 with cost 10 (money_left = 12-10 = 2), and then for

garment_id = 2, we can only choose model 1 with cost 1 as money_left does not allow us to buy

other models with cost 3 or 5. This greedy strategy ‘works’ for test cases A+B above and produce

the same optimal solution (8+10+1) = 19 and “no solution”, respectively. It also runs very fast,

which is 20 + 20 + ...+ 20 of total 20 times = 400 operations in the worst case.

But greedy does not work for many other cases. This test case below is a counter-example:

M = 12, C = 3

3 models of garment id 0 → 6 4 8

2 models of garment id 1 → 5 10

4 models of garment id 2 → 1 5 3 5

Greedy strategy selects model 3 of garment_id = 0 with cost 8 (money_left = 12-8 = 4), thus

we do not have enough money to buy any model in garment_id = 1 and wrongly reports “no

solution”. The optimal solution is actually (4+5+3 = 12), which use all our budget.

Approach 3: Top-Down DP (Accepted)

To solve this problem, we have to use DP. Let’s see the key ingredients to make DP works:

1. This problem has optimal sub-structures.

This is shown in Complete Search recurrence 3 above: solution for the sub-problem is part of

the solution of the original problem. Although optimal sub-structure are the same ingredient

to make a Greedy Algorithm work, this problem lacks the ‘greedy property’ ingredient.

2. This problem has overlapping sub-problems.

This is the key point of DP! The search space is actually not as big as 2020 analyzed in

Complete Search discussion above as many sub-problems are actually overlapping!

41

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

Let’s verify if this problem has overlapping sub-problems. Suppose that there are 2 models in certain

garment_id with the same price p. Then, Complete Search will move to the same sub-problem

shop(money_left - p, garment_id + 1) after picking either model! Similarly, this situation

also occur if some combination of money_left and chosen model’s price causes money_left1 - p1

= money_left2 - p2. This same sub-problem will be computed more than once! Inefficient!

So, how many distinct sub-problems (a.k.a. states) are there in this problem? The answer

is, only 201 × 20 = 4,020. As there only there are only 201 possible money_left (from 0 to 200,

inclusive) and 20 possible garment_id (from 0 to 19, inclusive). Each of the sub-problem just need

to be computed only once. If we can ensure this, we can solve this problem much faster.

Implementation of this DP solution is surprisingly simple. If we already have the recursive

backtracking (the recurrence relation shown previously), we can implement top-down DP by

doing these few additional steps:

1. Initialize a DP ‘memo’ table with dummy values, e.g. ‘-1’.

The dimension of the DP table must be the size of distinct sub-problems.

2. At the start of recursive function, simply check if this current state has been computed before.

(a) If it is, simply return the value from the DP memo table, O(1).

(b) If it is not, compute as per normal (just once) and then store the computed value in the

DP memo table so that further calls to this sub-problem is fast.

Analyzing DP solution is easy. If it has M states, then it requires at least O(M) memory space. If

filling a cell in this state requires O(k) steps, then the overall time complexity is O(kM). UVa 11450

- Wedding Shopping problem above has M = 201 × 20 = 4020 and k = 20 (as we have to iterate

through at most 20 models for each garment_id). Thus the time complexity is 4020× 20 = 80400,

which is very manageable. We show our code below as an illustration, especially for those who

have never coded a top-down DP algorithm before.

/* UVa 11450 - Wedding Shopping */

#include <iostream>

#include <algorithm>

#include <string.h>

using namespace std;

int M, C, K, price[25][25]; // price[garment_id (<= 20)][model (<= 20)]

int memo[210][25]; // dp table memo[money_left (<= 200)][garment_id (<= 20)]

int shop(int money_left, int garment_id) {

if (money_left < 0)

return -1000000000; // fail, return a large negative number (1B)

if (garment_id == C) // we have bought last garment

return M - money_left; // done, return this value

if (memo[money_left][garment_id] != -1) // if this state has been visited before

return memo[money_left][garment_id]; // simply return it

int max_value = -1000000000;

for (int model = 1; model <= price[garment_id][0]; model++) // try all possible models

max_value = max(max_value, shop(money_left - price[garment_id][model], garment_id + 1));

return memo[money_left][garment_id] = max_value; // assign max_value to dp table + return it!

}

42

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

int main() { // easy to code if you are already familiar with it

int i, j, TC, score;

scanf("%d", &TC);

while (TC--) {

scanf("%d %d", &M, &C);

for (i = 0; i < C; i++) {

scanf("%d", &K);

price[i][0] = K; // to simplify coding, we store K in price[i][0]

for (j = 1; j <= K; j++)

scanf("%d", &price[i][j]);

}

memset(memo, -1, sizeof memo); // initialize DP memo table

score = shop(M, 0); // start the top-down DP

if (score < 0)

printf("no solution\n");

else

printf("%d\n", score);

}

} // return 0;

Approach 4: Bottom-Up DP (Accepted)

There is another style of writing DP solutions, called the bottom-up DP. This is actually the ‘true

form’ of DP a.k.a. the ‘tabular method’. The steps to build bottom-up DP are like this:

1. Identify the Complete Search recurrence as with top-down DP above.

2. Initialize some parts of the DP table with known initial values.

3. Determine how to fill the rest of the DP table based on the Complete Search recurrence,

usually involving one or more nested loops to do so.

For UVa 11450 above, we can write the bottom-up DP as follow. For clarity of this discussion,

please see Figure 3.8 which illustrates test case A above.

First, set up a boolean matrix can_reach[money_left][garment_id] of size 201 × 20. At

first, only the cells reachable by buying any of the models of garment_id = 0 are true. See Figure

3.8, leftmost, where only rows ‘20-6 = 14’, ‘20-4 = 16’, and ‘20-8 = 12’ in column 0, are true.

Then, we loop through from second garment until the last garment. We set can_reach[a][b]

to be true if it is possible to reach this state from any states in previous column, i.e. from state

can_reach[a + price of any model of previous garment_id][b - 1]. See Figure 3.8, middle,

where for example, can_reach[11][1] can be reached from can_reach[11 + 5][0] by buying a

model with cost 5 in garment_id = 1; can_reach[2][1] can be reached from can_reach[2 + 10][0]

by buying a model with cost 10 in garment_id = 1; etc.

Finally, the answer can be found in the last column. Find the cell in that column nearest to

index 0 that is set to be true. In Figure 3.8, rightmost, the cell can_reach[1][2] is the answer.

This means that we can somehow reach this state (money_left = 1) by buying combination of

various garment models. The final answer is actually M - money_left, or in this case, 20-1 = 19.

The answer is “no solution” if there is no cell in the last column that is set to be true.

43

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

Figure 3.8: UVa 11450 - Bottom-Up DP Solution

We provide our code below for comparison with top-down version.

#include <iostream>

#include <string.h>

using namespace std;

int main() {

int i, j, l, TC, M, C, K, price[25][25]; // price[garment_id (<= 20)][model (<= 20)]

bool can_reach[210][25]; // can_reach table[money_left (<= 200)][garment_id (<= 20)]

// question: is 2nd dimension (model) needed? M = (201*20) -> (201) only?

scanf("%d", &TC); // can we compute the solution by just maintaining 2 most recent columns?

while (TC--) { // hint: DP-on-the-fly (a.k.a space saving trick)

scanf("%d %d", &M, &C);

for (i = 0; i < C; i++) {

scanf("%d", &K);

price[i][0] = K; // to simplify coding, we store K in price[i][0]

for (j = 1; j <= K; j++)

scanf("%d", &price[i][j]);

}

memset(can_reach, false, sizeof can_reach); // clear everything

for (i = 1; i <= price[0][0]; i++) // initial values

can_reach[M - price[0][i]][0] = true; // if only using first garment_id

// Challenge: this loop is written in column major, rewrite it in row major!

// See Tips 6.3 in Section 3.1.2

for (j = 1; j < C; j++) // for each remaining garment

for (i = 0; i < M; i++) if (can_reach[i][j - 1]) // if can reach this state

for (l = 1; l <= price[j][0]; l++) if (i - price[j][l] >= 0) // flag the rest

can_reach[i - price[j][l]][j] = true; // as long as it is feasible

for (i = 0; i <= M && !can_reach[i][C - 1]; i++); // the answer is in the last column

if (i == M + 1) // nothing in this last column has its bit turned on

printf("no solution\n");

else

printf("%d\n", M - i);

} } // return 0;

44

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

Top-Down versus Bottom-Up DP

As you can see, the way the bottom-up DP table is filled is not as intuitive as the top-down DP as

it requires some ‘reversals’ of the signs in Complete Search recurrence that we have developed in

previous sections. However, we are aware that some programmers actually feel that the bottom-up

version is more intuitive. The decision on using which DP style is in your hand. To help you decide

which style that you should take when presented with a DP solution, we present the trade-off

comparison between top-down and bottom-up DP in Table 3.1.

Top-Down Bottom-Up

Pro: Pro:
1. It is a natural transformation from normal
Complete Search recursion

1. Faster if many sub-problems are revisited
as there is no overhead from recursive calls

2. Compute sub-problems only when neces-
sary (sometimes this is faster)

2. Can save memory space with DP ‘on-the-
fly’ technique (see comment in code above)

Cons: Cons:
1. Slower if many sub-problems are revisited
due to recursive calls overhead (usually this
is not penalized in programming contests)

1. For some programmers who are inclined
with recursion, this may be not intuitive

2. If there are M states, it can use up to
O(M) table size which can lead to Memory
Limit Exceeded (MLE) for some hard prob-
lems

2. If there are M states, bottom-up DP visits
and fills the value of all these M states

Table 3.1: DP Decision Table

3.4.2 Several Classical DP Examples

There are many other well-known problems with efficient DP solutions. We consider these problems

as classic and therefore must be known by everyone who wish to do well in ICPC or IOI!

Longest Increasing Subsequence (LIS)

Problem: Given a sequence {X[0], X[1], . . . , X[N-1]}, determine its Longest Increasing Subsequence

(LIS)5 – as the name implies. Take note that ‘subsequence’ is not necessarily contiguous.

Example:

N = 8, sequence = {-7, 10, 9, 2, 3, 8, 8, 1}
The LIS is {-7, 2, 3, 8} of length 4.

Solution: Let LIS(i) be the LIS ending in index i, then we have these recurrences:
1. LIS(0) = 1 // base case
2. LIS(i) = ans, computed with a loop below:

int ans = 1;

for (int j = 0; j < i; j++) // O(n)

if (X[i] > X[j]) // if we can extend LIS(j) with i

ans = max(ans, 1 + LIS(j))

5There are other variants of this problem: Longest Decreasing Subsequence, Longest Non Increasing/Decreasing
Subsequence, and the O(n log k) solution by utilizing the fact that the LIS is sorted and binary-searchable. See
http://en.wikipedia.org/wiki/Longest increasing subsequence for more details. Note that increasing subse-
quences can be modeled as a Directed Acyclic Graph (DAG). Thus finding LIS is equivalent to finding longest path
in DAG.

45

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

The answer is the highest value of LIS(k) for all k in range [0 . . . N-1].

Figure 3.9: Longest Increasing Subsequence

In Figure 3.9, we see that:

LIS(0) is 1, the number -7 itself.

LIS(1) is now 2, as we can form {-7, 10} of length 2.

LIS(2) is also 2, as we can form {-7, 9}, but not {-7, 10} + {9} as it is non increasing.

LIS(3) is also 2, we can only form {-7, 2}. {-7, 10} + {2} or {-7, 9} + {2} are both non increasing.

LIS(4) is now 3, as we can extend {-7, 2} + {3} and this is the longest among other forms.

And so on until LIS(7). The answers are in LIS(5) or LIS(6), both with length 4.

There are clearly many overlapping sub-problems in LIS problem, but there are only N states, i.e.

the LIS ending at index i, for all i ∈ [0 . . . N-1]. As we need to compute each state with an O(n)

loop, then this DP algorithm runs in O(n2). The LIS solution(s) can be reconstructed by following

the arrows via some backtracking routine (scrutinize the arrows in Figure 3.9 for LIS(5) or LIS(6)).

Coin Change (CC) - The General Version

Problem6: Given a target amount V cents and a list of denominations of N coins, i.e. We have

coinValue[i] (in cents) for coin type i ∈ [0 . . . N-1], what is the minimum number of coins that we

must use to obtain amount V ? Assume that we have unlimited supply of coins of any type.

Example 1:

V = 10, N = 2, coinValue = {1, 5}
We can use:

A. Ten 1 cent coins = 10 × 1 = 10; Total coins used = 10

B. One 5 cents coin + Five 1 cent coins = 1 × 5 + 5 × 1 = 10; Total coins used = 6

C. Two 5 cents coins = 2 × 5 = 10; Total coins used = 2 → Optimal

Recall that we can use greedy solution if the coin denominations are suitable – as in Example 1

above (See Section 3.3). But for general cases, we have to use DP – as in Example 2 below:

Example 2:

V = 7, N = 4, coinValue = {1, 3, 4, 5}
Greedy solution will answer 3, using 5+1+1 = 7, but optimal solution is 2, using 4+3 only!

Solution: Use these Complete Search recurrences:

1. coin(0) = 0 // 0 coin to produce 0 cent

2. coin(< 0) = INVALID → (in practice, we just return a large positive value)

3. coin(value) = 1 + min(coin(value - coinValue[i])) ∀i ∈ [0..N-1]

The answer is in coin(V).

6There are other variants of this problem, e.g. counting how many ways to do coin change and a variant where
supply of coins are limited.

46

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

Figure 3.10: Coin Change

In Figure 3.10, we see that:

coin(0) = 0, base case one.

coin(< 0) = ∞, base case two.

coin(1) = 1, from 1 + coin(1-1), as 1 + coin(1-5) is infeasible.

coin(2) = 2, from 1 + coin(2-1), as 1 + coin(2-5) is also infeasible.

... same thing for coin(3) and coin(4).

coin(5) = 1, from 1 + coin(5-5) = 1 coin, smaller than 1 + coin(5-1) = 5 coins.

And so on until coin(10). The answer is in coin(10), which is 2.

We can see that there are a lot of overlapping sub-problems in this Coin Change problem, but there

are only O(V) possible states! As we need to try O(N) coins per state, the overall time complexity

of this DP solution is O(V N).

Maximum Sum

Abridged problem statement: Given n x n (1 ≤ n ≤ 100) array of integers, each ranging from [-127,

127], find a minimum sub-rectangle that have the maximum value.

Example: The 4 x 4 array (n = 4) below has 15 as the maximum sub-rectangle value.

0 -2 -7 0 3 x 2 from lower left sub-rectangle

9 2 -6 2 ==> | 9 2 | = 9 + 2 - 4 + 1 - 1 + 8 = 15

-4 1 -4 1 ==> | -4 1 |

-1 8 0 -2 ==> | -1 8 |

Näıvely attacking this problem as shown below does not work as it is an 1006 algorithm.

maxSubRect = -127*100*100; // lowest possible value for this problem

for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) // start coord

for (int k = i; k < n; k++) for (int l = j; l < n; l++) { // end coord

subRect = 0; // sum items in this sub-rectangle

for (int a = i; a <= k; a++) for (int b = j; b <= l; b++)

subRect += arr[a][b];

maxSubRect = max(maxSubRect, subRect); // keep largest so far

}

Solution: There are several (well-known) DP solutions for static range problem. DP can work in

this problem as computing a large sub-rectangle will definitely involves computing smaller sub-

rectangles in it and such computation involves overlapping sub-rectangles!

One possible DP solution is to turn this n x n array into an n x n sum array where arr[i][j]

no longer contains its own value, but the sum of all items within sub-rectangle (0, 0) to (i, j). This

can easily be done on-the-fly when reading the input and still O(n2).

47

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

scanf("%d", &n);

for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) {

scanf("%d", &arr[i][j]);

if (i > 0) arr[i][j] += arr[i - 1][j]; // if possible, add values from top

if (j > 0) arr[i][j] += arr[i][j - 1]; // if possible, add values from left

if (i > 0 && j > 0) arr[i][j] -= arr[i - 1][j - 1]; // to avoid double count

} // inclusion-exclusion principle

This code turns input array (shown in the left) into sum array (shown in the right):

0 -2 -7 0 ==> 0 -2 -9 -9

9 2 -6 2 ==> 9 9 -4 2

-4 1 -4 1 ==> 5 6 -11 -8

-1 8 0 -2 ==> 4 13 -4 -3

Now, with this sum array, we can answer the sum of any sub-rectangle (i, j) to (k, l) inO(1)! Suppose

we want to know the sum of (1, 2) to (3, 3). We can split the sum array into 4 sections and compute

arr[3][3] - arr[0][3] - arr[3][1] + arr[0][1] = -3 - 13 - (-9) + (-2) = -9.

0 [-2]| -9 [-9]

9 9 | -4 2

5 6 |-11 -8

4 [13]| -4 [-3]

With this O(1) DP formulation, this problem can now be solved in 1004.

maxSubRect = -127*100*100; // lowest possible value for this problem

for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) // start coord

for (int k = i; k < n; k++) for (int l = j; l < n; l++) { // end coord

subRect = arr[k][l]; // this is sum of all items from (0, 0) to (k, l): O(1)

if (i > 0) subRect -= arr[i - 1][l]; // O(1)

if (j > 0) subRect -= arr[k][j - 1]; // O(1)

if (i > 0 && j > 0) subRect += arr[i - 1][j - 1]; // inclusion-exclusion: O(1)

maxSubRect = max(maxSubRect, subRect);

}

Lesson: Not every range problems require Segment Tree as in Section 2.3.3! Problems where the

input data is static like this usually is solvable with DP technique.

Exercise 1: The solution above runs in 1004. There exist 1003 solution. Can you figure out how to

formulate this solution?

Exercise 2: What if the given static array is 1-D? Can you form a similar O(1) DP solution to

answer range sum query(i, j), i.e. arr[i] + arr[i+1] + ... + arr[j]?

Exercise 3: Use the solution from Exercise 2 to find maximum sum in 1-D array in O(n2). Can

you further improve the solution to O(n)?

Exercise 4: Now, what if the query is range minimum query(i, j) on 1-D static array. The solution

in Section 2.3.3 uses Segment Tree. Can you just utilize DP to solve the same problem – assuming

that this time there is no update operation?

48

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

Remarks

There are other classical DP problems that we choose not to cover in this book such as Matrix

Chain Multiplication [4], Optimal Binary Search Tree [14], 0-1 Knapsack [5, 14]. However, Floyd

Warshall’s will be discussed in Section 4.7; String Edit Distance, Longest Common Subsequence

(LCS), plus other DP on Strings in Section 6.3.

3.4.3 Non Classical Examples

Although DP is one problem type that is most frequently appears in recent programming contests,

the classical DP problems on their pure forms above usually never appear again in recent ICPCs or

IOIs. We have to study them to understand more about DP. But once we do, we have to move on

to solve many other non classical DP problems and build up our ‘DP technique skills’. As you can

see below, there are many interesting DP techniques from simple to intermediate. Try solving these

problems at the corresponding online judges to further improve your DP skills. We have grouped

and ordered the following DP problems from our perceived level of difficulty (easier to harder).

There are DP trick lessons in each example. Enjoy :).

1. Cutting Sticks (UVa 10003)

Abridged problem statement: Given a stick of length 1 ≤ l ≤ 1000, make 1 ≤ n ≤ 50 cuts to that

sticks (coordinates within range (0 . . . l) are given). The cost of cut is determined by the length of

the stick to be cut. Find a cutting sequence so that the overall cost is minimized!

Example: l = 100, n = 3, and cut coordinates: coord = {25, 50, 75} (already sorted)

If we cut from left to right, then we will incur cost = 225

1. Cut at coordinate 25, total cost = 100;

2. Cut at coordinate 50, total cost = 100 + 75 = 175;

3. Cut at coordinate 75, total cost = 175 + 50 = 225;

However, the optimal answer is: 200

1. Cut at coordinate 50, total cost = 100;

2. Cut at coordinate 25, total cost = 100 + 50 = 150;

3. Cut at coordinate 75, total cost = 150 + 50 = 200;

Solution: Use this Complete Search recurrences + top-down DP (memoization): cut(left, right)

1. If (left + 1 = right) where left and right are indices in array coord,

then cut(left, right) = 0 as we are left with 1 segment, there is no need to cut anymore.

2. Otherwise, try all possible cutting points and pick the minimum cost using code below:

// cost = initially infinity (a very large integer)

for (int i = left + 1; i < right; i++) // max 50 steps

cost = min(cost, cut(left, i) + cut(i, right) + (coord[right] - coord[left]));

// after the loop above is done, we know that cut(left, right) = cost

Lesson: The Complete Search recurrences above only has 50×50 possible left/right indices configu-

ration (states) and runs in just 50×50×50 = 125K operations! It is easy to convert this Complete

Search / recursive backtracking recurrence into a top-down DP a.k.a memoization technique!

49

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

2. Forming Quiz Teams (UVa 10911)

For the abridged problem statement and full solution code, refer to the very first problem mentioned

in Chapter 1. The grandiose name of this problem is “Minimum Weighted Perfect Matching on

Small General Graph”. In general, this problem is hard and the solution is Edmond’s Matching

algorithm (see [34]) which is not easy to code.

However, if the input size is small, up to M ≤ 20, then the following DP + bitmasks technique

can work. The idea is simple, as illustrated for M = 6: when nothing is matched yet, the state is

bit_mask=000000. If item 0 and item 2 are matched, we can turn on bit 0 and bit 2 via these simple

bit operations, i.e. bit_mask | (1 << 0) | (1 << 2), thus the state becomes bit_mask=000101.

Then, if from this state, item 1 and item 5 are matched, the state becomes bit_mask=010111. The

perfect matching is obtained when the state is all ‘1’s, in this case: bit_mask=111111.

Although there are many ways to arrive at a certain state, there are only O(2M) distinct states!

For each state, we record the minimum weight of previous matchings that must be done in order

to reach this state. As we want a perfect matching, then for a currently ‘off’ bit i, we must find

the best other ‘off’ bit j from [i+1 . . .M -1] using one O(M) loop. This check is again done using

bit operation, i.e. if (!(bit_mask & (1 << i))) – and similarly for j. This algorithm runs in

O(M × 2M). In problem UVa 10911, M = 2N and 2 ≤ N ≤ 8, so this DP + bitmasks approach is

feasible. For more details, please study the code shown in Section 1.2.

Lesson: DP + bitmasks can solve small instances M ≤ 20 of matching on general graph.

Exercise: The code in Section 1.2 says that “this ’break’ is necessary. do you understand why?”,

with hint: “it helps reducing time complexity from O((2N)2 × 22N) to O((2N)× 22N)”. Answer it!

3. Fishmonger (SPOJ 101)

Abridged problem statement: Given number of cities 3 ≤ n ≤ 50, available time 1 ≤ t ≤ 1000, and

two n × n matrices (one gives a travel time and another gives tolls between two cities), choose a

route from the first city 0 in such a way that one has to pay as little money for tolls as possible to

arrive at the last city n − 1 within a certain time t. Output two information: the total tolls that

is actually used and the actual traveling time.

Notice that there are two potentially conflicting requirements in this problem. Requirement

one is to minimize tolls along the route. Requirement two is to ensure that we arrive in last city

within allocated time, which may mean that we have to pay higher tolls in some part of the path.

Requirement two is a hard constraint. We must satisfy it, otherwise we do not have a solution.

It should be quite clear after trying several test cases that greedy Single-Source Shortest Paths

(SSSP) algorithm like Dijkstra’s (Section 4.5) – on its pure form – will not work as picking the

shortest travel time to ensure we use less than available time t may not lead to the smallest possible

tolls. On the other hand, picking the cheapest tolls along the route may not ensure that we arrive

within available time t. Both requirements cannot be made independent!

Solution: We can use the following Complete Search recurrences + top-down DP (memoization)

go(curCity, time left) that returns pairs of information (actual toll paid, actual time used):

1. go(any curCity, < 0) = make pair(INF, INF); // Cannot go further if we run out of time.

2. go(n− 1, ≥ 0) = make pair(0, 0); // Arrive at last city, no need to pay/travel anymore.

3. In general case, go(curCity, time left) is best described using the C++ code below:

50

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

pair<int, int> go(int curCity, int time_left) { // top-down DP, returns a pair

if (time_left < 0) // invalid

return make_pair(INF, INF); // a trick: return large value so that this state is not chosen

if (curCity == n - 1) // at last city

return make_pair(0, 0); // no need to pay toll, and time needed is 0

if (memo[curCity][time_left].first != -1) // visited before

return memo[curCity][time_left]; // simply return the answer

pair<int, int> answer = make_pair(INF, INF);

for (int neighbor = 0; neighbor < n; neighbor++) // try to go to another city

if (curCity != neighbor) { // force us to always move

pair<int, int> nextCity = go(neighbor,

time_left - travelTime[curCity][neighbor]); // go to the other city

// among neighboring cities, pick the one that has minimum cost

if (nextCity.first + toll[curCity][neighbor] < answer.first) {

answer.first = nextCity.first + toll[curCity][neighbor];

answer.second = nextCity.second + travelTime[curCity][neighbor];

}

}

return memo[curCity][time_left] = answer;

} // store the answer to memo table as well as returning the answer to the caller

Lesson: Some graph shortest (longest) path problems look solvable with classical (usually greedy)

graph algorithms in Chapter 4, but in reality should be solved using DP techniques7.

4. ACORN (ACM ICPC Singapore 2007 LA 4106)

Abridged problem statement: Given t oak trees, the height h of all trees, the height f that Jayjay

loses when it flies from one tree to another, 1 ≤ t, h ≤ 2000, 1 ≤ f ≤ 500, and the positions of acorns

on each of oak trees: acorn[tree][height], determine the maximum number of acorns that Jayjay

can collect in one single descent. Example: if t = 3, h = 10, f = 2 and acorn[tree][height] as

in Figure 3.11, the best descent path has a total of 8 acorns (dotted line).

Figure 3.11: ACM ICPC Singapore 2007 - Jayjay the Flying Squirrel Collecting Acorns

7This problem can also be solved with a modified Dijkstra’s.

51

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

Näıve DP Solution: Use a memo table total[tree][height] that stores the best possible acorns

collected when Jayjay is on a certain tree at certain height. Then Jayjay recursively tries to either

go down (-1) unit on the same oak tree or flies (-f) unit(s) to t−1 other oak trees from this position.

This approach requires up to 2000 × 2000 = 4M states and has time complexity 4M × 2000 = 8B

operations. This approach is clearly TLE!

Better DP Solution: We can actually ignore the information: “on which tree Jayjay is currently

at” as just memoizing the best among them is sufficient. Set a table: dp[height] that stores the

best possible acorns collected when Jayjay is at this height. The bottom-up DP code that requires

only 2000 = 2K states and time complexity of 2000 × 2000 = 4M is as follow:

for (int tree = 0; tree < t; tree++) // initialization

dp[h] = max(dp[h], acorn[tree][h]);

for (int height = h - 1; height >= 0; height--)

for (int tree = 0; tree < t; tree++) {

acorn[tree][height] +=

max(acorn[tree][height + 1], // from this tree, +1 above

((height + f <= h) ? dp[height + f] : 0)); // best from tree at height + f

dp[height] = max(dp[height], acorn[tree][height]); // update this too

}

printf("%d\n", dp[0]); // solution will be here

Lesson: When näıve DP states are too large causing the overall DP time complexity not-doable,

think of different ways other than the obvious to represent the possible states. Remember that no

programming contest problem is unsolvable, the problem setter must have known a trick.

5. Free Parentheses (ACM ICPC Jakarta 2008 LA 4143)

Abridged problem statement: You are given a simple arithmetic expression which consists of only

addition and subtraction operators, i.e. 1 - 2 + 3 - 4 - 5. You are free to put any parentheses

to the expression anywhere and as many as you want as long as the expression is still valid. How

many different numbers can you make? The answer for simple expression above is 6:

1 - 2 + 3 - 4 - 5 = -7 1 - (2 + 3 - 4 - 5) = 5

1 - (2 + 3) - 4 - 5 = -13 1 - 2 + 3 - (4 - 5) = 3

1 - (2 + 3 - 4) - 5 = -5 1 - (2 + 3) - (4 - 5) = -3

The expression consists of only 2 ≤ N ≤ 30 non-negative numbers less than 100, separated by

addition or subtraction operators. There is no operator before the first and after the last number.

To solve this problem, we need to make three observations:

1. We only need to put an open bracket after a ‘-’ (negative) sign as it will reverse the meaning of

subsequent ‘+’ and ‘-’ operators;

2. You can only put X close brackets if you already use X open brackets – we need to store this

information to process the subproblems correctly;

3. The max value is 100 + 100 + ... 100 (30 times) = 3000 and the min value is 100 - 100 - ... -

100 (29 times) = -2800 – this information needs to be stored, as we will see below.

The DP states that are easier to identify:

1. ‘idx’ – the current position being processed, we need to know where we are now.

2. ‘open’ – number of open brackets, we need this information in order to produce valid expression.

52

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

But these two states are not unique yet. For example, this partial expression: ‘1-1+1-1...’ has

state idx=3 (indices: 0,1,2,3 have been processed), open=0 (cannot put close bracket anymore),

which sums to 0. Then, ‘1-(1+1-1)...’ also has the same state idx=3, open=0 and sums to 0. But

‘1-(1+1)-1...’ has the same state idx=3, open=0, but sums to -2. This DP state is not yet unique.

So we need additional value to distinguish them, i.e. the value ‘val’, to make these states unique.

We can represent all possible states of this problem with bool state[idx][open][val], a

3-D array. As ‘val’ ranges from -2800 to 3000 (5801 distinct values), the number of states is

30× 30× 5801 ≈ 5M with only O(1) processing per state – fast enough. The code is shown below:

void rec(int idx, int open, int val) {

if (memo[idx][open][val + 3500]) // this state has been reached before

return; // notice the + 3500 trick to convert negative indices to [0 .. 7000]

// negative indices are not friendly for accessing a static array!

memo[idx][open][val + 3500] = 1; // set this state to be reached

if (idx == N) { // last number, current value is one of the possible

used[val + 3500] = 1; // result of expression

return;

}

int nval = val + num[idx] * sig[idx] * ((open % 2 == 0) ? 1 : -1);

if (sig[idx] == -1) // option 1: put open bracket only if sign is -

rec(idx+1, open+1, nval); // no effect if sign is +

if (open > 0) // option 2: put close bracket, can only do this if we

rec(idx+1, open-1, nval); // already have some open brackets

rec(idx+1, open, nval); // option 3: normal, do nothing

}

// Prepare a bool array ‘used’, initially set to all false,

// then run this top-down DP.

// The solution is all the values in array ‘used’,

// offset by -3500, that are flagged as true.

Lesson: DP formulation for this problem is not trivial. Try to find a state representation that can

uniquely identify sub-problems. Make observations and consider attacking the problem from there.

6. Max Weighted Independent Set (on a Tree)

Figure 3.12: Max Weighted Independent Set (MWIS) on Tree

53

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

Abridged problem statement: Given a weighted graph G, find Max Weighted Independent Set

(MWIS) on it. A subset of vertices of graph G is said to be Independent Set (IS)8 if there is no

edge in G between any two vertices in the IS. Our task is to select an IS with maximum weight of

G. If graph G is a tree, this problem has efficient DP solution (see Figure 3.12).

Figure 3.13: Root the Tree

Tip: For almost tree-related problems, we need to ‘root the tree’ first if it is not yet rooted. If the

tree does not have a vertex dedicated as root, pick an arbitrary vertex as the root. By doing this,

the subproblems w.r.t subtrees may appear, like in this MWIS problem on Tree (See Figure 3.13).

Once we have a rooted (sub)tree, we can formulate MWIS recurrences w.r.t their children. One

formulation is: C(v, selected) = max weight of subtree rooted at ‘v’ if it is ‘selected’.

Base cases (the leaves):

A. If leaf v is not selected, MWIS rooted at v is 0.

C(v, false) = 0 for all leaves v

B. If leaf v is selected, MWIS rooted at v is the weight of v.

C(v, true) = w(v) for all leaves v

Recurrence relations (the internal nodes):

A. If root v is taken, add weight of v but all children of v cannot be taken.

C(v, true) =
∑
ch ∈ children(v) C(ch, false) + w(v)

B. If root v is not taken, children of v may or may not be taken (pick the maximum one).

C(v, false) =
∑
ch ∈ children(v) max(C(ch, false), C(ch, true))

Answer will be in the root: max(C(root, false), C(root, true)). DP solution can be implemented

either in a top-down or bottom-up fashion. As there are only 2 × V states, the DP solution runs

in O(kV) where k is the average number of children of a vertex in the tree!

Lesson: Optimization problems on tree may be solved with DP techniques. The solution usually

involves passing information to parent and getting information from the children of a rooted tree.

3.4.4 Remarks About Dynamic Programming in Programming Contests

In the past (1990s), if a contestant is good with DP, he can become a ‘king of programming contests’

as usually DP problems are the ‘deciding problem’. But now, mastering DP is a basic requirement!

You cannot do well in contests without this knowledge. However, we have to keep reminding the

readers of this book not to claim that they know DP by memorizing the solutions of classical

DP problems! Try to go to the basics of problem solving using DP: Determine states (the table)

8FYI: The complement of Independent Set is Vertex Cover.

54

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

Figure 3.14: MWIS on Tree - The Solution

that can uniquely and efficiently represent sub-problems and then how to fill that table, either via

top-down recursion or bottom-up loop.

We suggest that other than the examples shown in Section 3.4.3, contestants should learn

newer forms of DP problems that keep appearing in recent programming contests, especially tricks

on speeding up DP solution using ‘quadrangle inequality’, convex property, binary search, etc.

Programming Exercises for problems solvable using Dynamic Programming:

• Longest Increasing Subsequence (LIS) – Classical

1. UVa 103 - Stacking Boxes (Longest Path in DAG ≈ LIS)

2. UVa 111 - History Grading (straight-forward)

3. UVa 231 - Testing the Catcher (straight-forward)

4. UVa 481 - What Goes Up? (must use O(n log k) LIS)

5. UVa 497 - Strategic Defense Initiative (solution must be printed)

6. UVa 10051 - Tower of Cubes (can be modeled as LIS)

7. UVa 10534 - Wavio Sequence (must use O(n log k) LIS twice)

8. UVa 11790 - Murcia’s Skyline (combination of classical LIS+LDS, weighted)

9. UVa 11003 - Boxes

10. UVa 11456 - Trainsorting (get max(LIS(i) + LDS(i) - 1), ∀i ∈ [0 . . .N -1])

11. LA 2815 - Tiling Up Blocks (Kaohsiung03)

• Coin Change – Classical

1. UVa 147 - Dollars (similar to UVa 357 and UVa 674)

2. UVa 166 - Making Change

3. UVa 357 - Let Me Count The Ways (a variant of the coin change problem)

4. UVa 674 - Coin Change

55

3.4. DYNAMIC PROGRAMMING � c© Steven & Felix, NUS

5. UVa 10306 - e-Coins

6. UVa 10313 - Pay the Price

7. UVa 11137 - Ingenuous Cubrency (use long long)

8. UVa 11517 - Exact Change

• Maximum Sum

1. UVa 108 - Maximum Sum (maximum 2-D sum, elaborated in this section)

2. UVa 836 - Largest Submatrix (maximum 2-D sum)

3. UVa 10074 - Take the Land (maximum 2-D sum)

4. UVa 10667 - Largest Block (maximum 2-D sum)

5. UVa 10827 - Maximum Sum on a Torus (maximum 2-D sum)

6. UVa 507 - Jill Rides Again (maximum 1-D sum/maximum consecutive subsequence)

7. UVa 10684 - The Jackpot (maximum 1-D sum/maximum consecutive subsequence)

• 0-1 Knapsack – Classical

1. UVa 562 - Dividing Coins

2. UVa 990 - Diving For Gold

3. UVa 10130 - SuperSale

4. LA 3619 - Sum of Different Primes (Yokohama06)

• String Edit (Alignment) Distance – Classical (see Section 6.3)

• Longest Common Subsequence – Classical (see Section 6.3)

• Non Classical (medium difficulty)

1. UVa 116 - Unidirectional TSP (similar to UVa 10337)

2. UVa 473 - Raucuous Rockers

3. UVa 607 - Scheduling Lectures

4. UVa 10003 - Cutting Sticks (discussed in this book)

5. UVa 10337 - Flight Planner (DP solvable with Dijkstra)

6. UVa 10891 - Game of Sum (2 dimensional states)

7. UVa 11450 - Wedding Shopping (discussed in this book)

8. LA 3404 - Atomic Car Race (Tokyo05)

• DP + Bitmasks

1. UVa 10364 - Square (bitmask technique can be used)

2. UVa 10651 - Pebble Solitaire

3. UVa 10908 - Largest Square

4. UVa 10911 - Forming Quiz Teams (elaborated in this section)

5. LA 3136 - Fun Game (Beijing04)

6. PKU 2441 - Arrange the Bulls

• DP on ‘Graph Problem’

1. UVa 590 - Always on the Run

2. UVa 910 - TV Game (straightforward)

3. UVa 10681 - Teobaldo’s Trip

4. UVa 10702 - Traveling Salesman

5. LA 4201 - Switch Bulbs (Dhaka08)

6. SPOJ 101 - Fishmonger

56

3.5. CHAPTER NOTES c© Steven & Felix, NUS

• DP with non-trivial states

1. LA 4106 - ACORN (Singapore07) (DP with dimension reduction)

2. LA 4143 - Free Parentheses (Jakarta08) (Problem set by Felix Halim)

3. LA 4146 - ICPC Team Strategy (Jakarta08) (DP with 3 states)

4. LA 4336 - Palindromic paths (Amritapuri08)

5. LA 4337 - Pile it down (Amritapuri08)

6. LA 4525 - Clues (Hsinchu09)

7. LA 4526 - Inventory (Hsinchu09)

8. LA 4643 - Twenty Questions (Tokyo09)

• DP on Tree

1. UVa 10243 - Fire! Fire!! Fire!!! (Min Vertex Cover ≈ Max Independent Set on Tree)

2. UVa 11307 - Alternative Arborescence (Min Chromatic Sum, 6 colors are sufficient)

3. LA 3685 - Perfect Service (Kaohsiung06)

4. LA 3794 - Party at Hali-Bula (Tehran06)

5. LA 3797 - Bribing FIPA (Tehran06)

6. LA 3902 - Network (Seoul07)

7. LA 4141 - Disjoint Paths (Jakarta08)

3.5 Chapter Notes

The main source of the ‘Complete Search’ material in this chapter is the USACO training gateway

[18].

We adopt the name ‘Complete Search’ rather than ‘Brute-Force’ as we believe that some Com-

plete Search solution can be clever and fast enough, although it is complete, e.g. Branch &

Bound and A* Search (both are not discussed yet in this book). We believe the term ‘clever

Brute-Force’ is a bit self-contradicting.

Divide and Conquer paradigm is usually used in form of its popular algorithms: binary search

(bisection method), merge/quick/heap sort, and data structures: binary search tree, heap, segment

tree, etc. We will see more Divide and Conquer later in Computational Geometry (Section 7.5).

Basic Greedy and Dynamic Programming (DP) techniques techniques are always included in

popular algorithm textbooks, e.g. Introduction to Algorithms [4], Algorithm Design [13], Algorithm

[5], Programming Challenges [23], The Art of Algorithms and Programming Contests [16], Art of

Programming Contest [1]. However, to keep pace with the growing difficulties and creativity of

these techniques, especially the DP techniques, we include more references from Internet: TopCoder

algorithm tutorial [25] and recent programming contests, e.g. ACM ICPC Regional Kaohsiung 2006,

Singapore 2007, Jakarta 2008, Central European Olympiad in Informatics 2009, etc.

However, for some real-life problems, especially those that are classified as NP-Complete [4],

many of the approaches discussed so far will not work. For example, 0-1 Knapsack Problem which

has O(nW) DP complexity is too slow if W is big. For this, people use heuristics or local search:

Beam Search, Tabu Search [10], Genetic Algorithm, Ants Colony Optimization, etc.

There are approximately 109 programming exercises discussed in this chapter.

57

Chapter 4

Graph

We Are All Connected

— Heroes TV Series

Many real-life problems can be classified as graph problems. Some have efficient solutions. Some do not have

them yet. In this chapter, we learn various graph problems with known efficient solutions, ranging from basic

traversal, minimum spanning trees, shortest paths, and network flow algorithms.

4.1 Overview and Motivation

In this chapter, we discuss graph problems that are commonly appear in programming contests,

the algorithms to solve them, and the practical implementations of these algorithms. The issue on

how to store graph information has been discussed earlier in Section 2.3.1.

We assume that the readers are familiar with the following terminologies: Vertices/Nodes,

Edges, Un/Weighted, Un/Directed, In/Out Degree, Self-Loop/Multiple Edges (Multigraph) versus

Simple Graph, Sparse/Dense, Path, Cycle, Isolated versus Reachable Vertices, (Strongly) Con-

nected Component, Sub-Graph, Tree/Forest, Complete Graph, Directed Acyclic Graph, Bipar-

tite Graph, Euler/Hamiltonian Path/Cycle. If you encounter any unknown terms. Please go to

Wikipedia [46] and search for that particular term.

Table 4.1 summarizes our research so far on graph problems in recent ACM ICPC Asia regional

contests and its ICPC Live Archive [11] IDs. Although there are so many graph problems (many

are discussed in this chapter), they only appear either once or twice in a problem set. The question

is: “Which ones that we have to learn?” If you want to do well in contests, you have no choice but

to study all these materials.

4.2 Depth First Search

Basic Form and Application

Depth First Search - abbreviated as DFS - is a simple algorithm to traverse a graph. With

the help of a global array int dfs_num[V] which is initially set to ‘unvisited’ (a constant value

58

4.2. DEPTH FIRST SEARCH c© Steven & Felix, NUS

LA Problem Name Source Graph Problem (Algorithm)

2817 The Suspects Kaohsiung03 Connected Component
2818 Geodetic Set Problem Kaohsiung03 APSP (Floyd Warshall)

3133 Finding Nemo Beijing04 SSSP (Dijkstra on Grid)
3138 Color a Tree Beijing04 DFS

3171 Oreon Manila06 MST (Kruskal)

3290 Invite Your Friends Dhaka05 SSSP Un+Weighted (BFS + Dijkstra)
3294 Ultimate Bamboo Eater Dhaka05 Longest Path in DAG (Toposort + DP + DS)

3678 Bug Sensor Problem Kaohsiung06 MST (Kruskal)

4099 Sub-dictionary Iran07 SCC

4109 USHER Singapore07 SSSP (Floyd Warshall, small graph)
4110 RACING Singapore07 ‘Maximum’ Spanning Tree (Kruskal)

4138 Anti Brute Force Lock Jakarta08 MST (Kruskal)

4271 Necklace Hefei08 Flow on Graph
4272 Polynomial-time Red... Hefei08 SCC

4407 Gun Fight KLumpur08 Bipartite Matching (≈ Max Flow)
4408 Unlock the Lock KLumpur08 SSSP on unweighted graph (BFS)

4524 Interstar Transport Hsinchu09 APSP (Floyd Warshall)

4637 Repeated Substitution ... Japan09 SSSP (BFS)
4645 Infected Land Japan09 SSSP (BFS)

Table 4.1: Some Graph Problems in Recent ACM ICPC Asia Regional

DFS_WHITE = -1), DFS starts from a vertex u, mark u as ‘visited’ (set dfs_num[u] to DFS_BLACK = 1),

and then for each ‘unvisited’ neighbor v of u (i.e. edge u − v exist in the graph), recursively visit

v. The snippet of DFS code is shown below:

typedef pair<int, int> ii; // we will frequently use these two data type shortcuts

typedef vector<ii> vii;

#define TRvii(c, it) \ // all sample codes involving TRvii use this macro

for (vii::iterator it = (c).begin(); it != (c).end(); it++)

void dfs(int u) { // DFS for normal usage

printf(" %d", u); dfs_num[u] = DFS_BLACK; // this vertex is visited, mark it

TRvii (AdjList[u], v) // try all neighbors v of vertex u

if (dfs_num[v->first] == DFS_WHITE) // avoid cycle

dfs(v->first); // v is a (neighbor, weight) pair

}

The time complexity of this DFS implementation depends on the graph data structure used. In

a graph with V vertices and E edges, dfs runs in O(V + E) and O(V 2) if the graph is stored as

Adjacency List and Adjacency Matrix, respectively.

Figure 4.1: Sample graph for the early part of this section

On sample graph in Figure 4.1, dfs(0) – calling DFS from a start vertex u = 0 – will trigger

this sequence of visitation: 0 → 1 → 2 → 3 → 4. This sequence is ‘depth-first’, i.e. DFS goes to

59

4.2. DEPTH FIRST SEARCH c© Steven & Felix, NUS

the deepest possible vertex from the start vertex before attempting another branches. Note that

this sequence of visitation depends very much on the way we order neighbors of a vertex, i.e. the

sequence 0 → 1 → 3 → 2 (backtrack to 3) → 4 is also a possible visitation sequence. Also notice

that one call of dfs(u) will only visit all vertices that are connected to vertex u. That is why

vertices 5, 6, and 7 in Figure 4.1 are currently unvisited by calling dfs(0).

The DFS code shown here is very similar to the recursive backtracking code shown earlier in

Section 3.1. If we compare the pseudocode of a typical backtracking code (replicated below) with

the DFS code shown above, we can see that the main difference is just whether we flag visited

vertices. DFS does. Backtracking does not. By not revisiting vertices, DFS runs in O(V +E), but

the time complexity of backtracking goes up exponentially.

void backtracking(state) {

if (hit end state or invalid state) // invalid state includes states that cause cycling

return; // we need terminating/pruning condition

for each neighbor of this state // regardless it has been visited or not

backtracking(neighbor);

}

Other Applications

DFS is not only useful for traversing a graph. It can be used to solve many other graph problems.

Finding Connected Components in Undirected Graph

The fact that one single call of dfs(u) will only visit vertices that are actually connected to u can

be utilized to find (and to count) the connected components of an undirected graph (see further

below for a similar problem on directed graph). We can simply use the following code to restart

DFS from one of the remaining unvisited vertices to find the next connected component (until all

are visited):

#define REP(i, a, b) \ // all sample codes involving REP use this macro

for (int i = int(a); i <= int(b); i++)

// inside int main()

numComponent = 0;

memset(dfs_num, DFS_WHITE, sizeof dfs_num);

REP (i, 0, V - 1)

if (dfs_num[i] == DFS_WHITE) {

printf("Component %d, visit:", ++numComponent);

dfs(i);

printf("\n");

}

printf("There are %d connected components\n", numComponent);

// For the sample graph, the output is like this:

// Component 1, visit: 0 1 2 3 4

// Component 2, visit: 5

// Component 3, visit: 6 7

Exercise: We can also use Union-Find Disjoint Sets to solve this graph problem. How?

60

4.2. DEPTH FIRST SEARCH c© Steven & Felix, NUS

Flood Fill - Labeling the Connected Components

DFS can be used for other purpose than just finding (and counting) the connected components.

Here, we show how a simple tweak of dfs(u) can be used to label the components. Typically, we

‘label’ (or ‘color’ the component by using its component number. This variant is more famously

known as ‘flood fill’.

void floodfill(int u, int color) {

dfs_num[u] = color; // not just a generic DFS_BLACK

TRvii (AdjList[u], v) // try all neighbors v of vertex u, note that we use our TRvii macro again

if (dfs_num[v->first] == DFS_WHITE) // avoid cycle

floodfill(v->first, color); // v is an (neighbor, weight) pair

}

// inside int main()

numComponent = 0;

memset(dfs_num, DFS_WHITE, sizeof dfs_num);

REP (i, 0, V - 1) // for each vertex u in [0..V-1], note that we use our REP macro again

if (dfs_num[i] == DFS_WHITE) // if not visited

floodfill(i, ++numComponent);

REP (i, 0, V - 1)

printf("Vertex %d has color %d\n", i, dfs_num[i]);

// For the sample graph, the output is like this:

// Vertex 0-1-2-3-4 have color 1

// Vertex 5 has color 2

// Vertex 6-7 has color 3

Exercise: Flood Fill is more commonly performed on 2-D grid (implicit graph). Try to solve UVa

352, 469, 572, etc.

Graph Edges Property Check via DFS Spanning Tree

Running DFS on a connected component of a graph will form a DFS spanning tree (or spanning

forest if the graph has more than one component and DFS is run on each component). With one

more vertex state: DFS_GRAY = 2 (visited but not yet completed) on top of DFS_WHITE (unvisited)

and DFS_BLACK (visited and completed), we can use this DFS spanning tree (or forest) to classify

graph edges into four types:

1. Tree edges: those traversed by DFS, i.e. from vertex with DFS_GRAY to vertex with DFS_WHITE.

2. Back edges: part of cycle, i.e. from vertex with DFS_GRAY to vertex with DFS_GRAY too.

Note that usually we do not count bi-directional edges as having ‘cycle’

(We need to remember dfs_parent to distinguish this, see the code below).

3. Forward/Cross edges from vertex with DFS_GRAY to vertex with DFS_BLACK.

These two type of edges are not typically used in programming contest problem.

Figure 4.2 shows an animation (from top left to bottom right) of calling dfs(0), then dfs(5), and

finally dfs(6) on the sample graph in Figure 4.1. We can see that 1 → 2 → 3 → 1 is a (true) cycle

and we classify edge (3 → 1) as a back edge, whereas 0 → 1 → 0 is not a cycle but edge (1 → 0) is

just a bi-directional edge. The code for this DFS variant is shown below.

61

4.2. DEPTH FIRST SEARCH c© Steven & Felix, NUS

Figure 4.2: Animation of DFS

void graphCheck(int u) { // DFS for checking graph edge properties...

dfs_num[u] = DFS_GRAY; // color this as GRAY (temporary)

TRvii (AdjList[u], v) { // traverse this AdjList

if (dfs_num[v->first] == DFS_WHITE) { // GRAY to WHITE

// printf(" Tree Edge (%d, %d)\n", u, v->first);

dfs_parent[v->first] = u; // parent of this children is me

graphCheck(v->first);

}

else if (dfs_num[v->first] == DFS_GRAY) { // GRAY to GRAY

if (v->first == dfs_parent[u])

printf(" Bidirectional (%d, %d) - (%d, %d)\n", u, v->first, v->first, u);

else

printf(" Back Edge (%d, %d) (Cycle)\n", u, v->first);

}

else if (dfs_num[v->first] == DFS_BLACK) // GRAY to BLACK

printf(" Forward/Cross Edge (%d, %d)\n", u, v->first);

}

dfs_num[u] = DFS_BLACK; // now color this as BLACK (DONE)

}

Finding Articulation Points and Bridges

Motivating problem: Given a road map (undirected graph) with cost associated to all intersections

(vertices) and roads (edges), sabotage either a single intersection or a single road that has minimum

cost such that the road network breaks down. This is a problem of finding the least cost Articulation

Point (intersection) or the least cost Bridge (road) in an undirected graph (road map).

An ‘Articulation Point’ is defined as a vertex in a graph G whose removal disconnects G. A

graph without any articulation points is called ‘Biconnected’. Similarly, a ‘Bridge’ is defined as

an edge in a graph G whose removal disconnects G. These two problems are usually defined for

undirected graphs, although they are still well defined for directed graphs.

62

4.2. DEPTH FIRST SEARCH c© Steven & Felix, NUS

A näıve algorithm to find articulation points (can be tweaked to find bridges too):

1. Run O(V + E) DFS to count number of connected components of the original graph

2. For all vertex v ∈ V // O(V)

(a) Cut (remove) vertex v and its incident edges

(b) Run O(V + E) DFS to check if number of connected components increase

(c) If yes, v is an articulation point/cut vertex; Restore v and its incident edges

This näıve algorithm calls DFS O(V) times, thus it runs in O(V × (V + E)) = O(V 2 + V E). But

this is not the best algorithm as we can actually just run the O(V + E) DFS once to identify all

the articulation points and bridges.

This DFS variant, due to John Hopcroft and Robert Endre Tarjan (see problem 22.2 in [4]), is

just another extension from the previous DFS code shown earlier.

This algorithm maintains two numbers: dfs_num(u) and dfs_low(u). Here, dfs_num(u) stores

the iteration counter when the vertex u is visited for the first time and not just for distinguishing

DFS_WHITE versus DFS_GRAY/DFS_BLACK. The other number dfs_low(u) stores the lowest dfs_num

reachable from DFS spanning sub tree of u. Initially dfs_low(u) = dfs_num(u) when vertex u

is first visited. Then, dfs_low(u) can only be made smaller if there is a cycle (some back edges

exist). Note that we do not update dfs_low(u) with back edge (u, v) if v is a direct parent of u.

See Figure 4.3 for clarity. In these two sample graphs, we run articulationPointAndBridge(0).

Suppose in the graph in Figure 4.3 – left side, the sequence of visitation is 0 (at iteration 0) → 1 (1)

→ 2 (2) (backtrack to 1) → 4 (3) → 3 (4) (backtrack to 4) → 5 (5). See that these iteration counters

are shown correctly in dfs_num. Since there is no back edge in this graph, all dfs_low = dfs_num.

Figure 4.3: Introducing two more DFS attributes: dfs number and dfs low

In the graph in Figure 4.3 – right side, the sequence of visitation is 0 (at iteration 0) → 1 (1) → 2

(2) (backtrack to 1) → 3 (3) (backtrack to 1) → 4 (4) → 5 (5). There is an important back edge

that forms a cycle, i.e. edge 5-1 that is part of cycle 1-4-5-1. This causes vertices 1, 4, and 5 to be

able to reach vertex 1 (with dfs_num 1). Thus dfs_low of {1, 4, 5} are all 1.

When we are in a vertex u, v is a neighbor of u, and dfs_low(v) ≥ dfs_num(u), then u is

an articulation vertex. This is because the fact that dfs_low(v) is not smaller than dfs_num(u)

implies that there is no back edge connected to vertex v that can reach vertex w with a lower

dfs_num(w) (which further implies that w is the parent of u in the DFS spanning tree). Thus, to

reach that parent of u from v, one must pass through vertex u. This implies that removing the

vertex u will disconnect the graph.

Special case: The root of the DFS spanning tree (the vertex chosen as the start of DFS call) is

an articulation point only if it has more than one children (a trivial case that is not detected by

this algorithm).

63

4.2. DEPTH FIRST SEARCH c© Steven & Felix, NUS

Figure 4.4: Finding articulation points with dfs num and dfs low

See Figure 4.4 for more details. On the graph in Figure 4.4 – left side, vertices 1 and 4 are

articulation points, because for example in edge 1-2, we see that dfs_low(2) ≥ dfs_num(1) and

in edge 4-5, we also see that dfs_low(5) ≥ dfs_num(4). On the graph in Figure 4.4 – right side,

vertex 1 is the articulation point, because for example in edge 1-5, dfs_low(5) ≥ dfs_num(1).

The process to find bridges is similar. When dfs_low(v) > dfs_num(u), then edge u-v is a

bridge. In Figure 4.5, almost all edges are bridges for the left and right graph. Only edges 1-4, 4-5,

and 5-1 are not bridges on the right graph. This is because – for example – edge 4-5, dfs_low(5)

≤ dfs_num(4), i.e. even if this edge 4-5 is removed, we know for sure that vertex 5 can still reach

vertex 1 via another path that bypass vertex 4 as dfs_low(5) = 1.

Figure 4.5: Finding bridges, also with dfs num and dfs low

The snippet of the code for this algorithm is as follow:

void articulationPointAndBridge(int u) {

dfs_low[u] = dfs_num[u] = dfsNumberCounter++; // dfs_low[u] <= dfs_num[u]

TRvii (AdjList[u], v)

if (dfs_num[v->first] == DFS_WHITE) { // a tree edge

dfs_parent[v->first] = u; // parent of this children is me

if (u == dfsRoot) // special case

rootChildren++; // count children of root

articulationPointAndBridge(v->first);

if (dfs_low[v->first] >= dfs_num[u]) // for articulation point

articulation_vertex[u] = true; // store this information first

if (dfs_low[v->first] > dfs_num[u]) // for bridge

printf(" Edge (%d, %d) is a bridge\n", u, v->first);

dfs_low[u] = min(dfs_low[u], dfs_low[v->first]); // update dfs_low[u]

}

else if (v->first != dfs_parent[u]) // a back edge and not direct cycle

dfs_low[u] = min(dfs_low[u], dfs_num[v->first]); // update dfs_low[u]

}

64

4.2. DEPTH FIRST SEARCH c© Steven & Felix, NUS

// inside int main()

dfsNumberCounter = 0;

memset(dfs_num, DFS_WHITE, sizeof dfs_num);

printf("Bridges:\n");

REP (i, 0, V - 1)

if (dfs_num[i] == DFS_WHITE) {

dfsRoot = i; rootChildren = 0;

articulationPointAndBridge(i);

articulation_vertex[dfsRoot] = (rootChildren > 1); // special case

}

printf("Articulation Points:\n");

REP (i, 0, V - 1)

if (articulation_vertex[i])

printf(" Vertex %d\n", i);

Finding Strongly Connected Components in Directed Graph

Yet another application of DFS is to find strongly connected components in a directed graph. This

is a different problem to finding connected components of an undirected graph. In Figure 4.6,

we have a similar graph to the graph in Figure 4.1, but now the edges are directed. We can see

that although the graph in Figure 4.6 looks like ‘connected’ into one component, it is actually

‘not strong’. In directed graph, we are more interested with the notion of ‘Strongly Connected

Component (SCC)’, i.e. if we pick any pair of vertices u and v in the SCC, we can find a path from

u to v and vice versa. There are actually three SCCs in Figure 4.6, as highlighted: {0}, {1, 3, 2},
and {4, 5, 7, 6}.

Figure 4.6: An example of directed graph and its Strongly Connected Components (SCC)

There are at least two known algorithms to find SCCs: Kosaraju’s – explained in [4] and Tarjan’s

algorithm [45]. In this book, we adopt Tarjan’s version, as it extends naturally from our previous

discussion of finding Articulation Points and Bridges – also due to Tarjan.

The basic idea of the algorithm is that SCCs form the subtrees of the DFS spanning tree

and the roots of the subtrees are also the roots of the SCCs. To determine whether a vertex u

is the root of an SCC, Tarjan’s SCC algorithm uses dfs_num and dfs_low, i.e. by checking if

dfs_low(u) = dfs_num(u). The visited vertices are pushed into a stack according to its dfs_num.

When DFS returns from a subtree, the vertices are popped from the stack. If the vertex is the root

of an SCC, then that vertex and all of the vertices popped before it forms that SCC. The code is

shown below:

65

4.2. DEPTH FIRST SEARCH c© Steven & Felix, NUS

stack<int> dfs_scc; // additional information for SCC

set<int> in_stack; // for dfs_low update check

void tarjanSCC(int u) {

dfs_low[u] = dfs_num[u] = dfsNumberCounter++; // dfs_low[u] <= dfs_num[u]

dfs_scc.push(u); in_stack.insert(u); // stores u based on order of visitation

TRvii (AdjList[u], v) {

if (dfs_num[v->first] == DFS_WHITE) // a tree edge

tarjanSCC(v->first);

if (in_stack.find(v->first) != in_stack.end()) // condition for update

dfs_low[u] = min(dfs_low[u], dfs_low[v->first]); // update dfs_low[u]

}

if (dfs_low[u] == dfs_num[u]) { // if this is a root of SCC

printf("SCC: ");

while (!dfs_scc.empty() && dfs_scc.top() != u) {

printf("%d ", dfs_scc.top()); in_stack.erase(dfs_scc.top()); dfs_scc.pop();

}

printf("%d\n", dfs_scc.top()); in_stack.erase(dfs_scc.top()); dfs_scc.pop();

} }

Exercise: This implementation can be improved by about O(log V) factor by using other data

structure other than set<int> in_stack. How?

Topological Sort (on a Directed Acyclic Graph)

Topological sort or topological ordering of a Directed Acyclic Graph (DAG) is a linear ordering of

the vertices in the DAG so that vertex u comes before vertex v if edge (u → v) exists in the DAG.

Every DAG has one or more topological sorts. There are several ways to implement a Topological

Sort algorithm. The simplest is to slightly modify the simplest DFS implementation in this section.

void topoVisit(int u) {

dfs_num[u] = DFS_BLACK;

TRvii (AdjList[u], v)

if (dfs_num[v->first] == DFS_WHITE)

topoVisit(v->first);

topologicalSort.push_back(u); // this is the only change

}

// inside int main()

topologicalSort.clear(); // this global vector stores topological sort in reverse order

memset(dfs_num, DFS_WHITE, sizeof dfs_num);

REP (i, 0, V - 1)

if (dfs_num[i] == DFS_WHITE)

topoVisit(i);

reverse(topologicalSort.begin(), topologicalSort.end());

REP (i, 0, topologicalSort.size() - 1)

printf("%d\n", topologicalSort[i]);

In topoVisit(u), we append u to the list vertices explored only after visiting all subtrees below u.

As vector only support efficient insertion from back, we work around this issue by simply reversing

the print order in the output phase. This simple algorithm for finding (a valid) topological sort is

again due to Tarjan. It again runs in O(V + E) as with DFS.

66

4.3. BREADTH FIRST SEARCH c© Steven & Felix, NUS

Exercise: Do you understand why appending topologicalSort.push_back(u) in the standard

DFS code is enough to help us find topological sort of a DAG? Explain in your own words!

Programming Exercises for Depth First Search (DFS):

• Finding Connected Components / Flood Fill

1. UVa 260 - Il Gioco dell’X

2. UVa 352 - Seasonal War (Flood Fill)

3. UVa 459 - Graph Connectivity (also solvable with Union-Find Disjoint Sets)

4. UVa 469 - Wetlands of Florida (Flood Fill)

5. UVa 572 - Oil Deposits (Flood Fill)

6. UVa 657 - The Die is Cast (Flood Fill)

7. UVa 782 - Countour Painting (Flood Fill)

8. UVa 784 - Maze Exploration (Flood Fill)

9. UVa 785 - Grid Colouring (Flood Fill)

10. UVa 852 - Deciding victory in Go (Flood Fill)

11. UVa 10336 - Rank the Languages (Flood Fill)

12. UVa 10926 - How Many Dependencies?

13. UVa 10946 - You want what filled? (Flood Fill)

14. UVa 11110 - Equidivisions (Flood Fill)

15. UVa 11518 - Dominos 2 (Flood Fill)

16. UVa 11749 - Poor Trade Advisor (also solvable with Union-Find Disjoint Sets)

• Finding Articulation Points / Bridges

1. UVa 315 - Network (Articulation Points)

2. UVa 610 - Street Directions (Bridges)

3. UVa 796 - Critical Links (Bridges)

4. UVa 10199 - Tourist Guide (Articulation Points)

• Finding Strongly Connected Components

1. UVa 10731 - Test

2. UVa 11504 - Dominos

3. UVa 11709 - Trust Groups

4. UVa 11770 - Lighting Away

• Topological Sort (also see shortest/longest paths problems in DAG in Section 4.9.2)

1. UVa 124 - Following Orders

2. UVa 200 - Rare Order

3. UVa 872 - Ordering

4. UVa 10305 - Ordering Tasks

4.3 Breadth First Search

Basic Form and Application

Breadth First Search - abbreviated as BFS - is another form of graph traversal algorithm. BFS

starts with the insertion of initial source vertex s into a queue, then processes the queue as follows:

67

4.3. BREADTH FIRST SEARCH c© Steven & Felix, NUS

take out the front most vertex u from the queue and enqueue each unvisited neighbors of u. With

the help of the queue, BFS will visit vertex s and all vertices in the connected component that

contains s layer by layer. This is why the name is breadth-first. BFS algorithm also runs in O(V +E)

on a graph represented using an Adjacency List.

Implementing BFS is easy if we utilize C++ STL libraries. We use queue to order the sequence

of visitation and map to record if a vertex has been visited or not – which at the same time also

record the distance (layer number) of each vertex from source vertex. This feature is important as

it can be used to solve special case of Single-Source Shortest Paths problem (discussed below).

queue<int> q; map<int, int> dist;

q.push(s); dist[s] = 0; // start from source

while (!q.empty()) {

int u = q.front(); q.pop(); // queue: layer by layer!

printf("Visit %d, Layer %d\n", u, dist[u]);

TRvii (AdjList[u], v) // for each neighbours of u

if (!dist.count(v->first)) { // dist.find(v) != dist.end() also works

dist[v->first] = dist[u] + 1; // if v not visited before + reachable from u

q.push(v->first); // enqueue v for next steps

} }

Exercise: This implementation uses map<STATE-TYPE, int> dist to store distance information.

This may be useful if STATE-TYPE is not integer, e.g. a pair<int, int> of (row, col) coordinate.

However, this trick adds a log V factor to the O(V + E) BFS complexity. Please, rewrite this

implementation to use vector<int> dist instead!

Figure 4.7: Animation of BFS (from UVa 336 [17])

If we run BFS from the vertex labeled with 35 (i.e. the source vertex s = 35) on the connected

undirected graph shown in Figure 4.7, we will visit the vertices in the following order:

Layer 0: >35< (source)

Layer 1: 15, 55, 40

Layer 2: 10, 20, 50, 60

Layer 3: >30<, 25, 47, 65

Layer 4: 45

// Three layers from ’35’ to ’30’ implies that the shortest path between them

// on this unweighted graph is 3 distance units.

Other Applications

Single-Source Shortest Paths (SSSP) on Unweighted Graph

The fact that BFS visits vertices of a graph layer by layer from a source vertex turns BFS as a good

solver for Single-Source Shortest Paths (SSSP) problem on unweighted graph. This is because in

68

4.3. BREADTH FIRST SEARCH c© Steven & Felix, NUS

unweighted graph, the distance between two neighboring vertices connected with an edge is simply

one unit. Thus the layer count of a vertex that we have seen previously is precisely the shortest

path length from the source to that vertex. For example in Figure 4.7, the shortest path from the

vertex labeled with ‘35’ to the vertex labeled ‘30’, is 3, as ‘30’ is in the third layer in BFS sequence

of visitation. Reconstructing the shortest path: 35 → 15 → 10 → 30 is easy if we store the BFS

spanning tree, i.e. vertex ‘30’ remembers ‘10’ as its parent, vertex ‘10’ remembers ‘15’, vertex ‘15’

remembers ‘35’ (the source).

Which graph traversal algorithm to choose? Table 4.2 can be helpful.

O(V + E) DFS O(V + E) BFS

Pro Uses less memory Can solve SSSP on unweighted graphs
Cons Cannot solve SSSP on unweighted graphs Uses more memory
Code Slightly easier to code Slightly longer to code

Table 4.2: Graph Traversal Algorithm Decision Table

Programming Exercises for Breadth First Search (BFS):

• Single-Source Shortest Paths on Unweighted Graph

1. UVa 336 - A Node Too Far

2. UVa 383 - Shipping Routes

3. UVa 417 - Word Index

4. UVa 429 - Word Transformation

5. UVa 439 - Knight Moves

6. UVa 532 - Dungeon Master (3-D BFS)

7. UVa 567 - Risk

8. UVa 627 - The Net (must print the path)

9. UVa 762 - We Ship Cheap

10. UVa 924 - Spreading the News

11. UVa 928 - Eternal Truths

12. UVa 10009 - All Roads Lead Where?

13. UVa 10044 - Erdos numbers (parsing part is troublesome)

14. UVa 10067 - Playing with Wheels (implicit graph in problem statement)

15. UVa 10102 - The Path in the Colored Field

16. UVa 10150 - Doublets (BFS state is string!)

17. UVa 10422 - Knights in FEN

18. UVa 10610 - Gopher and Hawks

19. UVa 10653 - Bombs! NO they are Mines!! (BFS implementation must be efficient)

20. UVa 10959 - The Party, Part I

21. UVa 11049 - Basic Wall Maze (some restricted moves + print path)

22. UVa 11352 - Crazy King

23. UVa 11513 - 9 Puzzle (BFS from goal state + efficient data structure)

24. UVa 11545 - Avoiding Jungle in the Dark

25. UVa 11730 - Number Transformation (need prime factoring, see Section 5.3.1)

26. UVa 11792 - Krochanska is Here! (be careful with the definition of ‘important station’)

27. LA 3290 - Invite Your Friends (plus Dijkstra’s)

69

4.4. KRUSKAL’S c© Steven & Felix, NUS

28. LA 4408 - Unlock the Lock

29. LA 4637 - Repeated Substitution with Sed

30. LA 4645 - Infected Land

• Variants

1. UVa 10004 - Bicoloring (Bipartite Graph check)

2. UVa 11080 - Place the Guards (Bipartite Graph check, some tricky cases)

3. UVa 11101 - Mall Mania (Multi-Sources BFS from mall1, get min at border of mall2)

4. UVa 11624 - Fire! (Multi-Sources BFS)

4.4 Kruskal’s

Basic Form and Application

Motivating problem: Given a connected, undirected, and weighted graph G (see the leftmost graph

in Figure 4.8), select a subset of edges E′ ∈ G such that the graph G is (still) connected and the

total weight of the selected edges E′ is minimal!

To satisfy connectivity criteria, edges in E′ must form a tree that spans (covers) all V ∈ G –

the spanning tree! There can be several valid spanning trees in G, i.e. see Figure 4.8, middle and

right sides. One of them is the required solution that satisfies the minimal weight criteria.

This problem is called the Minimum Spanning Tree (MST) problem and has many practical

applications, as we will see later in this section.

Figure 4.8: Example of a Minimum Spanning Tree (MST) Problem (from UVa 908 [17])

This MST problem can be solved with several well-known algorithms, i.e. Prim’s and Kruskal’s,

both are greedy algorithms and explained in [4, 21, 14, 23, 16, 1, 13, 5]. For programming contests,

we opt Kruskal’s as it’s implementation is very easy with help of 2 data structures.

Joseph Bernard Kruskal Jr.’s algorithm first sort E edges based on non decreasing weight in

O(E logE). This can be easily done using priority_queue (or alternatively, use vector & sort).

Then, it greedily tries to add O(E) edges with minimum costs to the solution as long as such

addition does not form a cycle. This cycle check can be done easily using Union-Find Disjoint Sets.

The code is short and in overall runs in O(E logE).

#typedef pair<int, int> ii; // we use ii as a shortcut of integer pair data type

priority_queue< pair<int, ii> > EdgeList; // sort by edge weight O(E log E)

// PQ default: sort descending. To sort ascending, we can use <(negative) weight(i, j), <i, j> >

70

4.4. KRUSKAL’S c© Steven & Felix, NUS

// for each edge with (i, j, weight) format

// EdgeList.push(make_pair(-weight, make_pair(i, j)));

// alternative implementation: use STL vector and algorithm:sort

mst_cost = 0; initSet(V); // all V are disjoint sets initially, see Section 2.3.2

while (!EdgeList.empty()) { // while there exist more edges, O(E)

pair<int, ii> front = EdgeList.top(); EdgeList.pop();

if (!isSameSet(front.second.first, front.second.second)) { // if no cycle

mst_cost += (-front.first); // add (negated) -weight of e to MST

unionSet(front.second.first, front.second.second); // link these two vertices

} }

// note that the number of disjoint sets must eventually be one!

// otherwise, no MST has been formed...

Figure 4.9: Kruskal’s Algorithm for MST Problem (from UVa 908 [17])

Exercise: The implementation shown here only stop when EdgeList is empty. For some cases, we

can stop Kruskal’s algorithm earlier. When and how to modify the code to handle this?

Figure 4.9 shows the execution of Kruskal’s algorithm on the graph shown in Figure 4.8, leftmost1.

Other Applications

Variants of basic MST problems are interesting. In this section, we will explore some of them.

‘Maximum’ Spanning Tree

Figure 4.10: ‘Maximum’ Spanning Tree Problem

This is a simple variant where we want the maximum, instead of the minimum ST. In Figure 4.10,

we see a comparison between MST and Maximum ST. Solution: sort edges in non increasing order.

71

4.4. KRUSKAL’S c© Steven & Felix, NUS

Figure 4.11: Partial ‘Minimum’ Spanning Tree Problem

Partial ‘Minimum’ Spanning Tree

In this variant, we do not start with a clean slate. Some edges in the given graph are already fixed

and must be taken as part of the Spanning Tree solution. We must continue building the ‘M’ST

from there, thus the resulting Spanning Tree perhaps no longer minimum overall. That’s why we

put the term ‘Minimum’ in quotes. In Figure 4.11, we see an example when one edge 1-2 is already

fixed (left). The actual MST is 10+13+17 = 40 which omits the edge 1-2 (middle). However, the

solution for this problem must be (25)+10+13 = 48 which uses the edge 1-2 (right).

The solution for this variant is simple. After taking into account all the fixed edges, we continue

running Kruskal’s algorithm on the remaining free edges.

Minimum Spanning ‘Forest’

Figure 4.12: Minimum Spanning ‘Forest’ Problem

In this variant, we want the spanning criteria, i.e. all vertices must be covered by some edges, but

we can stop even though the spanning tree has not been formed as long as the spanning criteria

is satisfied! This can happen when we have a spanning ‘forest’. Usually, the desired number of

components is told beforehand in the problem description. In Figure 4.12, left, we observe that the

MST for this graph is 10+13+17 = 40. But if we want a spanning forest with 2 components, then

the solution is just 10+13 = 23 on Figure 4.12, right.

To get minimum spanning forest is simple. Run Kruskal’s algorithm as per normal, but as

soon as the number of connected component equals to the desired pre-determined number, we can

terminate the algorithm.

Second Best Spanning Tree

Sometimes, we are interested to have a backup plan. In the context of finding the MST, we may

want not just the MST, but also the second best spanning tree, in case the MST is not workable.

Figure 4.13 shows the MST (left) and the second best ST (right). We can see that the second best

ST is actually the MST with just two edges difference, i.e. one edge is taken out from MST and

another chord2 edge is added to MST. In this example: the edge 4-5 is taken out and the edge 2-5

is added in.

1Note that the solution for this problem is definitely a tree, i.e. no cycles in the solution!
2A chord edge is defined as an edge in graph G that is not selected in the MST of G.

72

4.4. KRUSKAL’S c© Steven & Felix, NUS

Figure 4.13: Second Best Spanning Tree (from UVa 10600 [17])

A simple solution is to first sort the edges in O(E logE), then find the MST using Kruskal’s in

O(E). Then, for each edge in the MST, make its weight to be INF (infinite) to ‘delete’ it – in

practice, this is just a very big number. Then try to find the second best ST in O(V E) as there are

E = V − 1 edges in the MST that we have to try. Figure 4.14 shows this algorithm on the given

graph. Remember that both MST and second best ST are spanning tree, i.e. they are connected!

In overall, this algorithm runs in O(E logE + E + V E).

Figure 4.14: Finding the Second Best Spanning Tree from the MST

Programming Exercises for Kruskal’s algorithm:

• Standard Application (for MST)

1. UVa 908 - Re-connecting Computer Sites (discussed in this section)

2. UVa 10034 - Freckles (straightforward MST problem)

3. UVa 10307 - Killing Aliens in Borg Maze (build SSSP graph with BFS, then MST)

4. UVa 11228 - Transportation System (split output for short versus long edges)

5. UVa 11631 - Dark Roads (weight of all edges in graph - weight of all edges in MST)

6. UVa 11710 - Expensive Subway (output ‘Impossible’ if graph still unconnected)

7. UVa 11733 - Airports (maintain cost at every update)

8. UVa 11747 - Heavy Cycle Edges (sum the edge weights of the chords)

9. LA 4138 - Anti Brute Force Lock

73

4.5. DIJKSTRA’S c© Steven & Felix, NUS

• Variants

1. UVa 10147 - Highways (Partial ‘Minimum’ Spanning Tree)

2. UVa 10369 - Arctic Networks (Minimum Spanning ‘Forest’)

3. UVa 10397 - Connect the Campus (Partial ‘Minimum’ Spanning Tree)

4. UVa 10600 - ACM Contest and Blackout (Second Best Spanning Tree)

5. UVa 10842 - Traffic Flow (find min weighted edge in ‘Maximum’ Spanning Tree)

6. LA 3678 - The Bug Sensor Problem (Minimum Spanning ‘Forest’)

7. LA 4110 - RACING (‘Maximum’ Spanning Tree)

8. POJ 1679 - The Unique MST (Second Best Spanning Tree)

4.5 Dijkstra’s

Motivating problem: Given a weighted graph G and a starting source vertex s, what are the shortest

paths from s to the other vertices of G?

This problem is called the Single-Source3 Shortest Paths (SSSP) problem on a weighted graph.

It is a classical problem in graph theory and efficient algorithms exist. If the graph is unweighted,

we can use the BFS algorithm as shown earlier in Section 4.3. For a general weighted graph, BFS

does not work correctly and we should use algorithms like the O((E+V) log V) Dijkstra’s algorithm

(discussed here) or the O(V E) Bellman Ford’s algorithm (discussed in Section 4.6).

Edsger Wybe Dijkstra’s algorithm is a greedy algorithm: Initially, set the distance to all vertices

to be INF (a large number) but set the dist[source] = 0 (base case). Then, repeat the following

process from the source vertex: From the current vertex u with the smallest dist[u], ‘relax’ all

neighbors of u. relax(u, v) sets dist[v] = min(dist[v], dist[u] + weight(u, v)). Vertex

u is now done and will not be visited again. Then we greedily replace u with the unvisited vertex

x with currently smallest dist[x]. See proof of correctness of this greedy strategy in [4].

There can be many ways to implement this algorithm, especially in using the priority_queue.

The following code snippet may be one of the easiest implementation.

vector<int> dist(V, INF); dist[s] = 0; // INF = 2.10^9 not MAX_INT to avoid overflow

priority_queue<ii, vector<ii>, greater<ii> > pq; pq.push(ii(0, s)); // sort by distance

while (!pq.empty()) { // main loop

ii top = pq.top(); pq.pop(); // greedy: pick shortest unvisited vertex

int d = top.first, u = top.second;

if (d == dist[u]) // This check is important! We want to process vertex u only once but we can

// actually enqueue u several times in priority_queue... Fortunately, other occurrences of u

// in priority_queue will have greater distances and can be ignored (the overhead is small) :)

TRvii (AdjList[u], it) { // all outgoing edges from u

int v = it->first, weight_u_v = it->second;

if (dist[u] + weight_u_v < dist[v]) { // if can relax

dist[v] = dist[u] + weight_u_v; // relax

pq.push(ii(dist[v], v)); // enqueue this neighbor

} } } // regardless whether it is already in pq or not

3This generic SSSP problem can also be used to solve: 1). Single-Pair Shortest Path problem where both source
+ destination vertices are given and 2). Single-Destination Shortest Paths problem where we can simply reverse the
role of source and destination vertices.

74

4.6. BELLMAN FORD’S c© Steven & Felix, NUS

Figure 4.15: Dijkstra Animation on a Weighted Graph (from UVa 341 [17])

Figure 4.15 shows an example of running Dijkstra’s on a simple weighted graph |V | = 5 and |E| = 7:

1. At the beginning, only dist[source] = dist[2] = 0, pq is {(0,2)}.

2. From vertex 2, we relax vertices {1, 3, 5}. Now dist[1] = 2, dist[3] = 7, and dist[5] = 6.

Vertex 2 is done. The content of our priority_queue pq is {(2,1), (6,5), (7,3)}.

3. Among unprocessed vertices {1, 5, 3} in pq, vertex 1 has the least dist[1] = 2 and is in front

of pq. We dequeue (2,1) and relax all its neighbors: {3, 4} such that dist[3] = min(dist[3],

dist[1]+weight(1,3)) = min(7, 2+3) = 5 and dist[4] = 8. Vertex 1 is done. Now pq

contains {(5,3), (6,5), (7,3), (8,4)}. See that we have 2 vertex 3. But it does not matter, as

our Dijkstra’s implementation will only pick one with minimal distance later.

4. We dequeue (5,3) and try to do relax(3,4), but 5+5 = 10, whereas dist[4] = 8 (from

path 2-1-4). So dist[4] is unchanged. Vertex 3 is done and pq contains {(6,5), (7,3), (8,4)}.

5. We dequeue (6,5) and relax(5, 4), making dist[4] = 7 (the shorter path from 2 to 4 is

now 2-5-4 instead of 2-1-4). Vertex 5 is done and pq contains {(7,3), (7,4), (8,4)}.

6. Now, (7,3) can be ignored as we know that d > dist[3] (i.e. 7 > 5). Then (7,4) is processed

as before. And finally (8,4) is ignored again as d > dist[4] (i.e. 8 > 7). Dijkstra’s stops

here as the priority queue is empty.

4.6 Bellman Ford’s

If the input graph has negative edge weight, Dijkstra can fail. Figure 4.16 is a simple example where

Dijkstra’s fails. Dijkstra’s greedily sets dist[3] = 3 first and uses that value to relax dist[4] =

dist[3]+weight(3,4) = 3+3 = 6, before setting dist[3] = dist[2]+weight(2,3) = 10+(-10)

= 0. The correct answer is dist[4] = dist[3]+weight(3,4) = 0+3 = 3.

75

4.6. BELLMAN FORD’S c© Steven & Felix, NUS

To solve SSSP problem in the presence of negative edge weight, the more generic (but slower)

Bellman Ford’s algorithm must be used. This algorithm was invented by Richard Ernest Bellman

(the pioneer of DP techniques) and Lester Randolph Ford, Jr (the same person who invented Ford

Fulkerson’s method in Section 4.8). This algorithm is simple: Relax all E edges V − 1 times!

Figure 4.16: Dijkstra fails on Graph with negative weight

This is based on the idea that dist[source] = 0 and if we relax an edge(source, u), then

dist[u] will have correct value. If we then relax an edge(u, v), then dist[v] will also have

correct value... If we have relaxed all E edges V − 1 times, then the shortest path from the source

vertex to the furthest vertex from the source (path length: V -1 edges) should have been correctly

computed. The code is simple:

vector<int> dist(V, INF); dist[s] = 0; // INF = 2B not MAX_INT to avoid overflow

REP (i, 0, V - 1) // relax all E edges V-1 times, O(V)

REP (u, 0, V - 1) // these two loops = O(E)

TRvii (AdjList[u], v) // has edge and can be relaxed

dist[v->first] = min(dist[v->first], dist[u] + v->second);

REP (i, 0, V - 1)

printf("SSSP(%d, %d) = %d\n", s, i, dist[i]);

The complexity of Bellman Ford’s algorithm is O(V 3) if the graph is stored as Adjacency Matrix

or O(V E) if the graph is stored as Adjacency List. This is (much) slower compared to Dijkstra’s.

Thus, Bellman Ford’s is typically only used to solve SSSP problem when the input graph is not

too big and not guaranteed to have all non-negative edge weights!

Bellman Ford’s algorithm has one more interesting usage. After relaxing all E edges V -1 times,

the SSSP problem should have been solved, i.e. there is no way we can relax any more vertex. This

fact can be used to check the presence of negative cycle, although such a problem is ill-defined.

In Figure 4.17, left, we see a simple graph with negative cycle. After 1 pass, dist[1] = 973 and

dist[2] = 1015 (middle). After V − 1 = 2 passes, dist[1] = 988 and dist[1] = 946 (right).

But since there is a negative cycle, we can still do this one more time, i.e. relaxing dist[1] =

946+15 = 961 < 988!

Figure 4.17: Bellman Ford’s can detect the presence of negative cycle (from UVa 558 [17])

bool negative_cycle_exist = false;

REP (u, 0, V - 1) // one more pass to check

TRvii (AdjList[u], v)

if (dist[v->first] > dist[u] + v->second) // should be false, but if possible

negative_cycle_exist = true; // then negative cycle exists!

printf("Negative Cycle Exist? %s\n", negative_cycle_exist ? "Yes" : "No");

76

4.7. FLOYD WARSHALL’S c© Steven & Felix, NUS

In Table 4.3, we present an SSSP algorithm decision table with programming contest in mind.

This is to help readers in deciding which algorithm to choose depending on various graph criteria.

Graph BFS Dijkstra’s Bellman Ford’s
Criteria O(V + E) O((V +E) log V) O(V E)

Unweighted Best: V,E ≤ 1M Ok: V,E ≤ 50K Bad: V E ≤ 1M
Weighted WA except on Tree & DAG Best: V,E ≤ 50K Ok: V E ≤ 1M
Negative weight WA WA Best: V E ≤ 1M
Negative cycle Cannot detect Cannot detect Can detect

Table 4.3: SSSP Algorithm Decision Table

Programming Exercises for Dijkstra’s and Bellman Ford’s algorithms:

• Dijkstra’s Standard Application (for weighted SSSP)

1. UVa 341 - Non-Stop Travel (actually solvable with Floyd Warshall’s algorithm)

2. UVa 929 - Number Maze (on a 2-D maze graph)

3. UVa 10278 - Fire Station

4. UVa 10603 - Fill

5. UVa 10801 - Lift Hopping (model the graph carefully!)

6. UVa 10986 - Sending email (straightforward Dijkstra’s application)

7. UVa 11377 - Airport Setup (model the graph carefully!)

8. UVa 11492 - Babel (model the graph carefully!)

9. UVa 11635 - Hotel Booking (Dijkstra’s + BFS)

10. LA 3290 - Invite Your Friends (+ BFS)

• Bellman Ford’s Standard Application (for weighted SSSP with negative cycle)

1. UVa 558 - Wormholes (checking the existence of negative cycle)

2. UVa 10557 - XYZZY

3. UVa 11280 - Flying to Fredericton (modified Bellman Ford’s)

4.7 Floyd Warshall’s

Basic Form and Application

Motivating Problem: Given a connected, weighted graph G with V ≤ 100 and two vertices s1 and

s2, find a vertex v in G that represents the best meeting point, i.e. dist[s1][v] + dist[s2][v]

is the minimum over all possible v. What is the best solution?

This problem requires the shortest path information from two sources s1 and s2 to all vertices in

G. This can be easily done with two calls of Dijkstra’s algorithm. One from s1 to produce shortest

distance array dist1 from s1, and one from s2 to produce dist2. Then iterates through all possible

vertices in graph to find v such that dist1[v] + dist2[v] is minimized. Can we do better?

If the given graph is known to have V ≤ 100, then there is an even ‘simpler’ algorithm – in

terms of implementation – to solve this problem as quickly as possible!

77

4.7. FLOYD WARSHALL’S c© Steven & Felix, NUS

Load the small graph into an Adjacency Matrix and then run the following short code with

3 nested loops. When it terminates, AdjMatrix[i][j] will contain the shortest path distance

between two pair of vertices i and j in G. The original problem now become easy.

REP (k, 0, V - 1) // recall that #define REP(i, a, b) for (int i = int(a); i <= int(b); i++)

REP (i, 0, V - 1)

REP (j, 0, V - 1)

AdjMatrix[i][j] = min(AdjMatrix[i][j], AdjMatrix[i][k] + AdjMatrix[k][j]);

This algorithm is called Floyd Warshall’s algorithm, invented by Robert W Floyd and Stephen

Warshall. Floyd Warshall’s is a DP algorithm that clearly runs in O(V 3) due to its 3 nested

loops4, but since |V | ≤ 100 for the given problem, this is do-able. In general, Floyd Warshall’s

solves another classical graph problem: the All-Pairs Shortest Paths (APSP) problem. It is an

alternative algorithm (for small graphs) compared to calling SSSP algorithms multiple times:

1. V calls of O((V + E) logV) Dijkstra’s = O(V 3 log V) if E = O(V 2).

2. V calls of O(V E) Bellman Ford’s = O(V 4) if E = O(V 2).

In a programming contest setting, Floyd Warshall’s main attractiveness is basically its implemen-

tation speed – 4 short lines only. If the given graph is small, do not hesitate using this algorithm

– even if you only need a solution for the SSSP problem.

Explanation of Floyd Warshall’s DP Solution

We provide this section for the benefit of readers who are interested to know why Floyd Warshall’s

works. This section can be skipped if you just want to use this algorithm per se. However, examining

this section can further strengthen your DP skill. Note that there are graph problems that have

no classical algorithm and must be solved with DP techniques.

The basic idea behind Floyd Warshall’s is to gradually allow the usage of intermediate vertices

to form the shortest paths. Let the vertices be labeled from 0 to ‘V -1’. We start with direct edges

only, i.e. shortest path of vertex i to vertex j, denoted as sp(i,j) = weight of edge (i,j). We

then find shortest paths between any two vertices with help of restricted intermediate vertices from

vertex [0 ... k]. First, we only allow k = 0, then k = 1, ..., up to k = V -1.

Figure 4.18: Floyd Warshall’s Explanation

4Floyd Warshall’s algorithm must use Adjacency Matrix so that the weight of edge(i, j) can be accessed in O(1).

78

4.7. FLOYD WARSHALL’S c© Steven & Felix, NUS

In Figure 4.18, we want to find sp(3,4). The shortest possible path is 3-0-2-4 with cost 3. But how

to reach this solution? We know that with direct edges only, sp(3,4) = 5, as in Figure 4.18.A.

The solution for sp(3,4) will eventually be reached from sp(3,2)+sp(2,4). But with only direct

edges, sp(3,2)+sp(2,4) = 3+1 is still > 3.

When we allow k = 0, i.e. vertex 0 can now be used as an intermediate vertex, then sp(3,4) is

reduced as sp(3,4) = sp(3,0)+sp(0,4) = 1+3 = 4, as in Figure 4.18.B. Note that with k = 0,

sp(3,2) – which we will need later – also drop from 3 to sp(3,0)+sp(0,2) = 1+1 = 2. Floyd

Warshall’s will process sp(i,j) for all pairs considering only vertex 0 as the intermediate vertex.

When we allow k = 1, i.e. vertex 0 and 1 can now be used as the intermediate vertices, then it

happens that there is no change to sp(3,4), sp(3,2), nor to sp(2,4).

When we allow k = 2, i.e. vertices 0, 1, and 2 now can be used as the intermediate vertices, then

sp(3,4) is reduced again as sp(3,4) = sp(3,2)+sp(2,4) = 2+1 = 3. Floyd Warshall’s repeats

this process for k = 3 and finally k = 4 but sp(3,4) remains at 3.

We define Dk
i,j to be the shortest distance from i to j with only [0..k] as intermediate vertices.

Then, Floyd Warshall’s recurrence is as follows:

D−1
i,j = weight(i, j). This is the base case when we do not use any intermediate vertices.

Dk
i,j = min(Dk−1

i,j ,Dk−1
i,k +Dk−1

k,j) = min(not using vertex k, using k), for k ≥ 0, see Figure 4.19.

Figure 4.19: Using Intermediate Vertex to (Possibly) Shorten Path

This DP formulation requires us to fill the entries layer by layer. To fill out an entry in the table k,

we make use of entries in the table k-1. For example, to calculate D2
3,4, (row 3, column 4, in table

k = 2, index start from 0), we look at the minimum of D1
3,4 or the sum of D1

3,2 + D1
2,4. See Figure

4.20 for illustration.

Figure 4.20: Floyd Warshall’s DP Table

The näıve implementation is to use 3-dimensional matrix D[k][i][j] of size O(V 3). However,

we can utilize a space-saving trick by dropping dimension k and computing D[i][j] ‘on-the-fly’.

Thus, the Floyd Warshall’s algorithm just need O(V 2) space although it still runs in O(V 3).

Other Applications

The basic purpose of Floyd Warshall’s algorithm is to solve the APSP problem. However, it can

also be applied to other graph problems.

79

4.7. FLOYD WARSHALL’S c© Steven & Felix, NUS

Transitive Closure (Warshall’s algorithm)

Stephen Warshall developed algorithm for finding solution for Transitive Closure problem: Given

a graph, determine if vertex i is connected to j. This variant uses logical bitwise operators which

is much faster than arithmetic operators. Initially, d[i][j] contains 1 (true) if vertex i is directly

connected to vertex j, 0 (false) otherwise. After running O(V 3) Warshall’s algorithm below, we

can check if any two vertices i and j are directly or indirectly connected by checking d[i][j].

REP (k, 0, V - 1)

REP (i, 0, V - 1)

REP (j, 0, V - 1)

d[i][j] = d[i][j] | (d[i][k] & d[k][j]);

Minimax and Maximin

The Minimax path problem is a problem of finding the minimum of maximum edge weight among

all possible paths from i to j. There can be many paths from i to j. For a single path from i to

j, we pick the maximum edge weight along this path. Then for all possible paths from i to j, pick

the one with the minimum max-edge-weight. The reverse problem of Maximin is defined similarly.

The solution using Floyd Warshall’s is shown below. First, initialize d[i][j] to be the weight

of edge (i,j). This is the default minimax cost for two vertices that are directly connected. For pair

i-j without any direct edge, set d[i][j] = INF. Then, we try all possible intermediate vertex k.

The minimax cost d[i][j] is min of either (itself) or (the max between d[i][k] or d[k][j]).

REP (k, 0, V - 1)

REP (i, 0, V - 1)

REP (j, 0, V - 1)

d[i][j] = min(d[i][j], max(d[i][k], d[k][j]));

Exercise: In this section, we have shown you how to solve Minimax (and Maximin) with Floyd

Warshall’s algorithm. However, this problem can also be modeled as an MST problem and solved

using Kruskal’s algorithm. Find out the way!

Programming Exercises for Floyd Warshall’s algorithm:

• Floyd Warshall’s Standard Application (for APSP or SSSP on small graph)

1. UVa 186 - Trip Routing (graph is small)

2. UVa 341 - Non-Stop Travel (graph is small)

3. UVa 423 - MPI Maelstrom (graph is small)

4. UVa 821 - Page Hopping (one of the ‘easiest’ ICPC World Finals problem)

5. UVa 10075 - Airlines (with special great-circle distances, see Section 7.2)

6. UVa 10171 - Meeting Prof. Miguel (solution is easy with APSP information)

7. UVa 11015 - 05-32 Rendezvous (graph is small)

8. UVa 10246 - Asterix and Obelix

9. UVa 10724 - Road Construction (adding one edge will only change ‘few things’)

10. UVa 10793 - The Orc Attack (Floyd Warshall’s simplifies this problem)

11. UVa 10803 - Thunder Mountain (graph is small)

12. UVa 11463 - Commandos (solution is easy with APSP information)

80

4.8. EDMONDS KARP’S (EXCLUDED IN IOI SYLLABUS) c© Steven & Felix, NUS

• Variants

1. UVa 334 - Identifying Concurrent Events (transitive closure is only the sub-problem)

2. UVa 534 - Frogger (Minimax)

3. UVa 544 - Heavy Cargo (Maximin)

4. UVa 869 - Airline Comparison (run Warshall’s twice, then compare the AdjMatrices)

5. UVa 925 - No more prerequisites, please!

6. UVa 10048 - Audiophobia (Minimax)

7. UVa 10099 - Tourist Guide (Maximin)

4.8 Edmonds Karp’s

Basic Form and Application

Motivating problem: Imagine a connected, weighted, and directed graph as a pipe network where

the pipes are the edges and the splitting points are the vertices. Each pipe has a capacity equals

to the weight of the edge. There are also two special vertices: source s and sink t. What is the

maximum flow from source s to sink t in this graph? (imagine water flowing in the pipe network,

we want to know the maximum volume of water that can be passed by this pipe network)? This

problem is called the Max Flow problem. An illustration of this problem is shown in Figure 4.21.

Figure 4.21: Illustration of Max Flow (From UVa 820 [17] - ICPC World Finals 2000 Problem E)

One solution is the Ford Fulkerson’s method – invented by the same Lester Randolph Ford. Jr who

created Bellman Ford’s algorithm and Delbert Ray Fulkerson. The pseudo code is like this:

max_flow = 0

while (there exists an augmenting path p from s to t) { // iterative algorithm

augment flow f along p, i.e.

f = min edge weight in the path p

max_flow += f // we can send flow f from s to t

forward edges -= f // reduce capacity of these edges

backward edges += f // increase capacity of reverse edges

}

output max_flow

81

4.8. EDMONDS KARP’S (EXCLUDED IN IOI SYLLABUS) c© Steven & Felix, NUS

There are several ways to find an augmenting path in the pseudo code above, each with different

time complexity. In this section, we highlight two ways: via DFS or via BFS.

Ford Fulkerson’s method implemented using DFS can run in O(f∗E) where f∗ is the max flow

value. This is because we can have a graph like in Figure 4.22 where every path augmentation only

decreases the edge capacity along the path by 1. This is going to be repeated f∗ times. In Figure

4.22, it is 200 times. The fact that number of edges in flow graph is E ≥ V − 1 to ensure ∃ ≥ 1 s-t

flow dictates that a DFS run is O(E). The overall time complexity is O(f∗E).

Figure 4.22: Implementation of Ford Fulkerson’s Method with DFS is Slow

A better implementation of Ford Fulkerson’s method is to use BFS for finding the shortest path

– in terms of number of layers/hops - between s and t. This algorithm is discovered by Jack

Edmonds and Richard Karp, thus named as Edmonds Karp’s algorithm. It runs in O(V E2) as it

can be proven that after O(V E) iterations, all augmenting paths will already exhausted. Interested

readers can browse books like [4] to study more about this algorithm. As BFS also runs in O(E),

the overall time complexity is O(V E2). Edmonds Karp’s only needs two s-t paths in Figure 4.22:

s-a-t (send 100 unit flow) and s-b-t (send another 100).

map<int, int> p; // parent map to reconstruct path

int f, s, t; // global variables

// inside int main()

int max_flow = 0;

while (1) { // this will be run max O(VE) times

f = 0;

queue<int> q; map<int, int> dist; // O(E) BFS and record path p

q.push(s); dist[s] = 0; // start from source

while (!q.empty()) {

int u = q.front(); q.pop(); // queue: layer by layer!

if (u == t) break; // modification 1: reach sink t, stop BFS

TRvii (AdjList[u], v) // for each neighbours of u

// modification 2: also check AdjMat as edges may disappear

if (AdjMat[u][v->first] > 0 && !dist.count(v->first)) {

dist[v->first] = dist[u] + 1; // then v is reachable from u

q.push(v->first); // enqueue v for next steps

p[v->first] = u; // modification 3: parent of v->first is u

}

}

augmentPath(t, INF); // path augmentation in O(V)

if (f == 0) break; // seems that we cannot pass any more flow

max_flow += f;

}

printf("Max flow = %d\n", max_flow);

82

4.8. EDMONDS KARP’S (EXCLUDED IN IOI SYLLABUS) c© Steven & Felix, NUS

void augmentPath(int v, int minEdge) {

if (v == s) { // managed to get back to source

f = minEdge; // minEdge of the path

return;

}

else if (p.count(v)) { // augment if there is a path

// we need AdjMat for fast lookup here

augmentPath(p[v], min(minEdge, AdjMat[p[v]][v]));

AdjMat[p[v]][v] -= f; // forward edges -> decrease

AdjMat[v][p[v]] += f; // backward edges -> increase

} } // for more details why we must do that, consult references!

The code snippet above shows how to implement Edmonds Karp’s algorithm in a way that it still

achieves its O(V E2) time complexity. The code uses both Adjacency List (for fast enumeration of

neighbors) and Adjacency Matrix (for fast access to edge weight) of the same flow graph.

In general, this O(V E2) Edmonds Karp’s implementation is sufficient to answer most network

flow problems in programming contests. However, for harder problems, we may need O(V 2E)

Dinic’s or O(V 3) Push-Relabel (relabel-to-front) Max Flow algorithms [4].

Exercise: The implementation of Edmonds Karp’s algorithm shown here uses AdjMatrix to store

residual capacity of each edge. A better way is to store flow of each edge, and then derive the

residual from capacity of edge minus flow in edge. Modify the implementation!

Other Applications

There are several other interesting applications of Max Flow problem. We discuss six examples

here while some others are deferred until Section 4.9. Note that some tricks shown in this section

may be applicable to other graph problems.

Min Cut

Let’s define an s-t cut C = (S, T) as a partition of V ∈ G such that source s ∈ S and sink t ∈ T .

Let’s also define a cut-set of C to be the set {(u, v) ∈ E | u ∈ S, v ∈ T} such that if all edges in the

cut-set of C are removed, the Max Flow from s to t is 0 (i.e. s and t are disconnected). The cost of

an s-t cut C is defined by the sum of the capacities of the edges in the cut-set of C. The Min Cut

problem is to minimize the amount of capacity of an s-t cut. This problem is more general than

finding bridges in a graph (See Section 4.2), i.e. in this case we can cut more than just one edge,

but we want to do so in least cost way.

The solution for this problem is simple. The by-product of computing the Max Flow is Min

Cut. In Figure 4.21.D, we can see that edges that are saturated, i.e. the flow on that edge equals

to that edge’s capacity, belong to the Min Cut!, i.e. edges 1-4 (capacity 30, flow 30), 3-4 (5/5) and

3-2 (25/25). The cost of cut is 30+5+25 = 60. This is the minimum over all possible s-t cuts. All

vertices that are still reachable from source s belong to set S. The rest belong to set T . Here,

S = {1, 3} and T = {4, 2}.

Multi-source Multi-sink Max Flow

Sometimes, we can have more than one source and/or more than one sink. However, this variant

is no harder than the original Max Flow problem with a single source and a single sink. Create a

83

4.8. EDMONDS KARP’S (EXCLUDED IN IOI SYLLABUS) c© Steven & Felix, NUS

super source ss and a super sink st. Connect ss with all s with infinite capacity and also connect

tt with all t with infinite capacity, then run Edmonds Karp’s algorithm as per normal.

Max Flow with Vertex Capacities

Figure 4.23: Vertex Splitting Technique

We can also have a Max Flow variant where capacities are not just defined along the edges but

also on the vertices. To solve this variant, we can use the vertex splitting technique. A graph with

a vertex weight can be converted into a more familiar graph without a vertex weight by splitting

the vertex v to vout and vin, reassigning incoming edges to vout/outgoing edges to vin, and putting

the original vertex v’s weight as the weight of edge (vout, vin). For details, see Figure 4.23. Then

run Edmonds Karp’s algorithm as per normal.

Max Independent Paths

The problem of finding the maximum number of independent paths from source s to sink t can be

reduced to the Max Flow problem. Two paths are said to be independent if they do not share any

vertex apart from s and t (vertex-disjoint). Solution: construct a flow network N = (V,E) from G

with vertex capacities, where N is the carbon copy of G except that the capacity of each v ∈ V is

1 (i.e. each vertex can only be used once) and the capacity of each e ∈ E is also 1 (i.e. each edge

can only be used once too). Then run Edmonds Karp’s algorithm as per normal.

Max Edge-Disjoint Paths

Finding the maximum number of edge-disjoint paths from s to t is similar to finding max inde-

pendent paths. The only difference is that this time we do not have any vertex capacity (i.e. two

edge-disjoint paths can still share the same vertex). See Figure 4.24 for a comparison between

independent paths and edge-disjoint paths from s = 1 to t = 7.

Figure 4.24: Comparison Between Max Independent Paths versus Max Edge-Disjoint Paths

84

4.9. SPECIAL GRAPHS c© Steven & Felix, NUS

Min Cost (Max) Flow

The min cost flow problem is the problem of finding the cheapest possible way of sending a certain

amount of flow (usually the Max Flow) through a flow network. In this problem, every edge has

two attributes: the flow capacity through this edge and the cost to use this edge. Min Cost (Max)

Flow, or in short MCMF, can be solved by replacing the BFS to find augmenting path in Edmonds

Karp’s to Bellman Ford’s (Dijkstra’s may not work as the edge weight in the residual flow graph

can be negative).

Programming Exercises for Ford Fulkerson’s/Edmonds Karp’s algorithm:

• Edmonds Karp’s Standard Application (for Max Flow/Min Cut)

1. UVa 820 - Internet Bandwidth (discussed in this section)

2. UVa 10480 - Sabotage (Min Cut)

3. UVa 10779 - Collector’s Problem (Max Flow)

4. UVa 11506 - Angry Programmer (Min Cut)

• Variants

1. UVa 563 - Crimewave (Max Independent Paths: with unit edge and vertex capacities)

2. UVa 10330 - Power Transmission (with Vertex Capacities, discussed in this section)

3. UVa 10511 - Councilling

4. UVa 10594 - Data Flow (basic MCMF problem)

5. UVa 10806 - Dijkstra, Dijkstra. (Max Edge-Disjoint Paths + Min Cost)

4.9 Special Graphs

Some basic graph problems have simpler / faster polynomial algorithm if the given graph is special.

So far we have identified the following special graphs that commonly appear in programming

contests: Tree, Directed Acyclic Graph (DAG), and Bipartite Graph. Problem setters may

force contestants to use specialized algorithms for these special graphs simply by giving a large

input size to judge a correct algorithm for general graph as Time Limit Exceeded (TLE). In this

section, we will discuss some popular graph problems on these special graphs (see Figure 4.25).

Figure 4.25: Special Graphs (Left to Right): Tree, Directed Acyclic Graph, Bipartite Graph

85

4.9. SPECIAL GRAPHS c© Steven & Felix, NUS

4.9.1 Tree

Tree is a special graph with the following characteristics: has E = V -1 (any O(V +E) algorithm is

O(V)), it has no cycle, it is connected, and there exists one unique path from any pair of vertices.

Finding Articulation Points and Bridges in Tree

In Section 4.2, we have seen O(V +E) Tarjan’s DFS algorithm for finding articulation points and

bridges of a graph. However, if the given graph is a tree, the problem becomes simpler: all edges on

a tree are bridges and all internal vertices (degree > 1) are articulation points. This is still O(V)

as we have to scan the tree to count the number of internal vertices, but the code is simpler.

Single-Source Shortest Paths on Weighted Tree

In Sections 4.5 and 4.6, we have seen two general purpose algorithms (O((E + V) log V) Dijkstra’s

and O(V E) Bellman-Ford’s) for solving the SSSP problem on a weighted graph. However, if the

given graph is a tree, the SSSP problem becomes simpler: any O(V) graph traversal algorithm, i.e.

BFS or DFS, can be used to solve this problem. There is only one unique path between any two

vertices in a tree, so we simply traverse the tree to find the path connecting the two vertices and

the shortest path between these two vertices is basically the sum of edge weights of this unique

path.

All-Pairs Shortest Paths on Weighted Tree

In Section 4.7, we have seen a general purpose algorithm (O(V 3) Floyd Warshall’s) for solving

the APSP problem on weighted graph. However, if the given graph is a tree, the APSP problem

becomes simpler: repeat the SSSP process V times from each vertex, thus it is O(V 2).

But this can still be improved to O(V +Q×L): Q is the number of query and L is the complexity

of the Lowest Common Ancestor (LCA) implementation (see [40] for more details). We run O(V)

DFS/BFS once from any vertex v to find dist[v][other vertices] in tree. Then we can answer any

shortest path query (i, j) on this tree by reporting dist[v][i] + dist[v][j] - 2 × dist[v][LCA(i, j)].

Diameter of Tree

The diameter of a graph is defined as the greatest distance between any pair of vertices. To find

the diameter of a graph, we first find the shortest path between each pair of vertices (the APSP

problem). The greatest length of any of these paths is the diameter of the graph. For general

graph, we may need O(V 3) Floyd Warshall’s algorithm discussed in Section 4.7. However, if the

given graph is a tree, the problem becomes simpler: do DFS/BFS from any node s to find furthest

vertex x, then do DFS/BFS one more time from vertex x to get the true furthest vertex y from x.

The length of the unique path along x to y is the diameter of that tree. This solution only requires

two calls of O(V) graph traversal algorithm.

Max Weighted Independent Set on Tree

In Section 3.4, we have shown a DP on Tree example that solves Max Weighted Independent Set

(MWIS) on Tree in O(V). In Section 4.9.3 below, we will revisit this problem on a Bipartite Graph,

86

4.9. SPECIAL GRAPHS c© Steven & Felix, NUS

which can be reduced to Max Flow problem and runs in O(V E2) with Edmonds Karp’s. However,

this problem is NP-complete on general graph.

Programming Exercises related to Tree (also see Section 3.4.3 for ‘DP on Tree’ Topic):

1. UVa 112 - Tree Summing (backtracking)

2. UVa 115 - Climbing Trees (tree traversal, LCA)

3. UVa 122 - Trees on the level (tree traversal)

4. UVa 536 - Tree Recovery (tree traversal, reconstructing tree from pre + inorder)

5. UVa 615 - Is It A Tree? (graph property check)

6. UVa 699 - The Falling Leaves (preorder traversal)

7. UVa 712 - S-Trees (tree traversal)

8. UVa 10308 - Roads in the North (diameter of tree, discussed in this section)

9. UVa 10459 - The Tree Root (diameter + center of tree)

10. UVa 10701 - Pre, in and post (reconstructing tree from pre + inorder)

11. UVa 10938 - Flea Circus (use LCA)

12. UVa 11695 - Flight Planning (diameter + center of tree)

4.9.2 Directed Acyclic Graph

A Directed Acyclic Graph, abbreviated as DAG, is a special graph with the following characteristics:

it is directed and has no cycle.

Single-Source Shortest Paths on DAG

The Single-Source Shortest Paths (SSSP) problem becomes much simpler if the given graph is a

DAG as DAG has at least one topological order! We can use an O(V +E) topological sort algorithm

in Section 4.2 to find one such topological order, then relax edges according to this order. The

topological order will ensure that if we have a vertex b that has an incoming edge from a vertex a,

then vertex b is relaxed after vertex a. This way, the distance information propagation is correct

with just one O(V + E) linear pass!

Single-Source Longest Paths on DAG

Single-Source Longest Paths problem, i.e. finding the longest path from a starting vertex s is

NP-complete on a general graph [39]. However the problem is again easy if the graph has no cycle,

which is true in DAG. The solution for the Longest Paths in DAG (a.k.a. Critical Paths) is just a

minor tweak from the SSSP solution in DAG shown above, i.e. simply negate all edge weights.

Min Path Cover on DAG

Motivating problem: Imagine that the vertices in Figure 4.26.A are passengers, and we draw an

edge between two vertices u−v if a single taxi can serve passenger u then passenger v on time. The

question is: What is the minimum number of taxis that must be deployed to serve all passengers?

87

4.9. SPECIAL GRAPHS c© Steven & Felix, NUS

The answer for the motivating problem above is two taxis. In Figure 4.26.D, we see one possible

solution. One taxi (red dotted line) serves passenger 1 (colored with red), passenger 2 (blue), and

then passenger 4 (yellow). Another taxi (green dashed line) serves passenger 3 (green) and passenger

5 (orange). All passengers are served with just two taxis.

Figure 4.26: Min Path Cover in DAG (from LA 3126 [11])

In general, the Min Path Cover (MPC) problem in DAG is described as the problem of finding the

minimum number of paths to cover each vertex in DAG G = (V,E).

This problem has a polynomial solution: Construct a bipartite graph G′ = (Vout
⋃
Vin, E

′) from
G, where Vout = {v ∈ V : v has positive out-degree}, Vin = {v ∈ V : v has positive in-degree},
and E′ = {(u, v) ∈ (V out, V in) : (u, v) ∈ E}. This G′ is a bipartite graph. Finding a matching on

bipartite graph G′ forces us to select at most one outgoing edge from v ∈ Vout (similarly for Vin).

DAG G initially has n vertices, which can be covered with n paths of length 0 (the vertex itself).

One matching between vertex a and vertex b using edge (a, b) says that we can use one less path as

it can cover both vertices in a ∈ Vout and b ∈ Vin. Thus if the Max Cardinality Bipartite Matching

(MCBM) in G′ has size m, then we just need n−m paths to cover each vertex in G.

The MCBM in G′ that is needed to solve the MPC in G is discussed below. The solution for

bipartite matching is polynomial, thus the solution for the MPC in DAG is also polynomial. Note

that MPC in general graph is NP-Complete [42].

Programming Exercises related to DAG:

• Single-Source Shortest/Longest Paths on DAG

1. UVa 103 - Stacking Boxes

2. UVa 10000 - Longest Paths

3. UVa 10166 - Travel (shortest paths)

4. UVa 10029 - Edit Step Ladders

5. UVa 10350 - Liftless Eme (shortest paths)

6. UVa 11324 - The Largest Clique (find SCC first then longest path on DAG)

7. LA 3294 - The Ultimate Bamboo Eater (with 2-D Segment Tree)

8. Ural/Timus OJ 1450 - Russian pipelines

9. PKU 3160 - Father Christmas flymouse

• Counting Paths in DAG

1. UVa 825 - Walking on the Safe Side (the graph is DAG, DP)

2. UVa 926 - Walking Around Wisely (the graph is DAG, DP)

3. UVa 988 - Many paths, one destination (topological sort + DP on DAG)

88

4.9. SPECIAL GRAPHS c© Steven & Felix, NUS

• Min Path Cover in DAG

1. LA 2696 - Air Raid

2. LA 3126 - Taxi Cab Scheme

4.9.3 Bipartite Graph

Bipartite Graph, is a special graph with the following characteristics: the set of vertices V can be

partitioned into two disjoint sets V1 and V2 and all edges in (u, v) ∈ E has the property that u ∈ V1

and v ∈ V2. The most common application is the (bipartite) matching problem, shown below.

Max Cardinality Bipartite Matching

Motivating problem (from TopCoder [26] Open 2009 Qualifying 1): Group a list of numbers into

pairs such that the sum of each pair is prime. For example, given the numbers {1, 4, 7, 10, 11, 12},
we can have: {1 + 4 = 5}, {1 + 10 = 11}, {1 + 12 = 13}, {4 + 7 = 11}, {7 + 10 = 17}, etc.

Actual task: Given a list of numbers N , return a list of all the elements in N that could be

paired with N [0] successfully as part of a complete pairing (i.e. each element a in N is paired to a

unique other element b in N such that a + b is prime), sorted in ascending order. The answer for

the example above would be {4, 10} – omitting 12. This is because even though (1+12) is prime,

there would be no way to pair the remaining 4 numbers whereas if we pair (1+4), we have (7+10),

(11+12) and if we pair (1+10), we have (4+7), (11+12).

Constraints: list N contains an even number of elements (within [2 . . . 50], inclusive). Each

element of N will be between 1 and 1000, inclusive. Each element of N will be distinct.

Although this problem involves finding prime numbers, this is not a pure math problem as the

elements of N are not more than 1K – there are not too many primes below 1000. The issue is

that we cannot do Complete Search pairings as there are 50C2 possibilities for the first pair, 48C2

for the second pair, ..., until 2C2 for the last pair. DP + bitmask technique is not an option either

because 50! is too big.

The key to solve this problem is to realize that this pairing or matching is done on bipartite

graph! To get a prime number, we need to sum 1 odd + 1 even, because 1 odd + 1 odd = even

number which is not prime, and 1 even + 1 even = also even number, which is not prime. Thus we

can split odd/even numbers to set1/set2 and give edges from set1 to set2 if set1[i] + set2[j]

is prime.

After we build this bipartite graph, the solution is trivial: If size of set1 and set2 are different,

complete pairing is not possible. Otherwise, if the size of both sets is n/2, try to match set1[0]

with set2[k] for k = [0 . . . n/2− 1] and do Max Cardinality Bipartite Matching (MCBM) for the

rest. This problem can be solved with Max Flow algorithm like O(V E2) Edmonds Karps algorithm.

If we obtain n/2− 1 more matchings, add set2[k] to the answer. For this test case, the answer is

{4, 10}.
Bipartite Matching can be reduced to the Max Flow problem by assigning a dummy source

vertex connected to all vertices in set1 and a dummy sink vertex connected to all vertices in set2.

By setting capacities of all edges in this graph to be 1, we force each vertex in set1 to be matched to

only one vertex in set2. The Max Flow will be equal to the maximum number of possible matchings

on the original graph (see Figure 4.27).

89

4.9. SPECIAL GRAPHS c© Steven & Felix, NUS

Figure 4.27: Bipartite Matching can be reduced to Max Flow problem

Max Weighted Independent Set on Bipartite Graph

Motivating Problem: Suppose that there are two users: User A and B. Each user has transactions,

e.g. A has {A1, A2, . . . , An} and each transaction has a weight, e.g. W (A1),W (A2), etc. These

transactions use shared resources, e.g. transaction A1 uses {r1, r2}. Access to a resource is exclusive,
e.g. if A1 is selected, then any of user B’s transaction(s) that use either r1 or r2 cannot be selected.

It is guaranteed that two requests from user A will never use the same resource, but two requests

from different users may be competing for the same resource. Our task is to maximize the sum of

weight of the selected transactions!

Let’s do several keyword analysis of this problem. If a transaction from user A is selected, then

transactions from user B that share some or all resources cannot be selected. This is a strong hint

for Independent Set. And since we want to maximize sum of weight of selected transactions, this

is Max Weighted Independent Set (MWIS). And since there are only two users (two sets)

and the problem statement guarantees that there is no resource conflict between the transactions

from within one user, we are sure that the input graph is a Bipartite Graph. Thus, this problem

is actually an MWIS on Bipartite Graph.

Figure 4.28: Example of MWIS on Bipartite Graph (from LA 3487 [11])

Let’s see Figure 4.28 for illustration. We have two users. We list down all transactions of A on the

left and all transactions of B on the right. We draw an edge between two transactions if they share

similar resource. For example, transaction A1 uses resource 1 and transaction B1 also uses resource

1. We draw an edge between A1 (with weight 45) and B1 (with weight 54) because they share the

same resource. In fact, there are two more edges between A2− B2 and A3−B3. Transaction B4

has no edge because the resources that it used: {4, 5} are not shared with any other transactions.

In this instance, {B1(54), A2(51), A3(62), B4(2)} is the MWIS, with total weight = 54+51+62+2

= 169.

90

4.9. SPECIAL GRAPHS c© Steven & Felix, NUS

To find the solution for non-trivial cases, we have to reduce this problem to a Max Flow problem.

We assign the original vertex cost (the weight of taking that vertex) as capacity from source to

that vertex for user A and capacity from that vertex to sink for user B. Then, we give ‘infinite’

capacity in between any edge in between sets A and B. See Figure 4.29.

Figure 4.29: Reducing MWIS on Bipartite Graph to Max Flow Problem (from LA 3487 [11])

Then, we run O(V E2) Edmonds Karp’s algorithm on this Flow graph. After the Max Flow algo-

rithm terminates, the solution is {s-component
⋂

vertices in User A} + {t-component
⋂

vertices in

User B} where s-component (t-component) are the vertices still reachable to source vertex (sink ver-

tex) after running Max Flow. In Figure 4.30, the solution is: {A1(20), A2(18), A4(54)}+{B3(47)} =

139. This value can also be obtained via: MWIS = Total Weight - Max Flow = 259 − 120 = 139.

Figure 4.30: Solution for Figure 4.29 (from LA 3487 [11])

Programming Exercises related to Bipartite Graph:

• Maximum Cardinality Bipartite Matching (graph modeling + Max Flow)

1. UVa 670 - The Dog Task

2. UVa 753 - A Plug for Unix

3. UVa 10080 - Gopher II

4. UVa 10092 - The Problem with the Problemsetter

5. UVa 10735 - Euler Circuit

6. UVa 11045 - My T-Shirt Suits Me

7. UVa 11418 - Clever Naming Patterns

8. Top Coder Open 2003 Semifinal Round 4 - Division 1, Level 3 - RookAttack

9. Top Coder Open 2009: Qualifying 1 - Prime Pairs

10. LA 4407 - Gun Fight

91

4.10. CHAPTER NOTES c© Steven & Felix, NUS

• Max Weighted Independent Set in Bipartite Graph

1. UVa 11159 - Factors and Multiples (similar solution with Bipartite Matching above)

2. LA 3487 - Duopoly (also in Zhejiang Online Judge problem 2129)

• Max Vertex Cover in Bipartite Graph

1. UVa 11419 - SAM I AM (Min Vertex Cover)

2. LA 2523 - Machine Schedule (also in PKU 1325 - Machine Schedule)

3. PKU 2226 - Muddy Fields

4.10 Chapter Notes

Take note that recent ICPCs and IOIs usually do not just ask contestants to solve problems involving

the pure form of these graph algorithms. New problems usually require contestants to combine two

or more algorithms or to combine an algorithm with some advanced data structures, e.g. using

BFS and Dijkstra’s together in the same problem to compute shortest path on both weighted and

unweighted version of the same graph, to combine longest path in DAG with Segment Tree data

structure, etc.

This chapter, albeit already quite long, still omits many known graph algorithms and graph

problems that are sometimes tested in ICPCs or IOIs, namely: Kosaraju’s algorithm for find-

ing Strongly Connected Component, Prim’s and Boruvka’s algorithms for Minimum Spanning

Tree, k-th shortest paths, Euler’s Path/Tour, Fleury’s algorithm, Chinese Postman Problem,

Hamiltonian Path/Tour, Bitonic Traveling Salesman Problem, Arborescence, Tarjan’s Offline

Lowest Common Ancestor, Dinic’s or Push Relabel algorithms for Max Flow, Circulation

Problem, Kuhn Munkres’s (Hungarian) matching algorithm, Edmonds’s Blossom Shrink-

ing, etc.

If you want to increase your winning chance in ACM ICPC, please spend some time to study

them beyond this book. These harder ones rarely appears in regional contests and if they are, they

usually become the decider problem. Harder graph problems like these are more likely to appear

in ACM ICPC World Finals level.

However, for IOI contestants, most graph materials in IOI syllabus are already covered in this

chapter.

There are approximately 173 programming exercises discussed in this chapter.

92

Chapter 5

Mathematics

We all use math every day; to predict weather, to tell time, to handle money.

Math is more than formulas or equations; it’s logic, it’s rationality,

it’s using your mind to solve the biggest mysteries we know.

— TV show NUMB3RS

Recent ICPCs (especially in Asia) usually contain one or two mathematics problems. This chapter aims to

prepare contestants in dealing with them.

5.1 Overview and Motivation

As with the topic of graph in previous chapter, there exist mathematics problems in recent ICPC

problem sets – at least one, and can be two per problem set (see Table 5.1)!

LA Problem Name Source Mathematics Problem (Algorithm)

2194 The Luncheon Dhaka06
2195 Counting Zeroes Dhaka06 Prime Numbers

2953 Sum of Factorials Guangzhou03
2955 Vivian’s Problem Guangzhou03

3172 Period of an Infinite ... Manila06

3399 Sum of Consecutive ... Japan05 Prime Numbers

3904 Tile Code Seoul07 Combinatorics

3997 Numerical surprises Danang07

4104 MODEX Singapore07 Modular Exponentiation (Java BigInteger)

4203 Puzzles of Triangles Dhaka08
4209 Stopping Doom’s Day Dhaka08 Formula Simplification + BigInt

4270 Discrete Square Roots Hefei08

4340 Find Terrorists Amrita08

4406 Irreducible Fractions KLumpur08

4715 Rating Hazard Phuket09 Farey Sequence
4721 Nowhere Money Phuket09 Fibonacci, Zeckendorf Theorem

Table 5.1: Some Mathematics Problems in Recent ACM ICPC Asia Regional

93

5.2. AD HOC MATHEMATICS PROBLEMS c© Steven & Felix, NUS

The appearance of mathematics problems in programming contests is not surprising since Computer

Science is deeply rooted in Mathematics. The term ‘computer’ itself comes from the word ‘compute’

as computer is built primarily to help human compute numbers.

We are aware that different countries have different emphasis in mathematics training in pre-

University education. Thus, for some newbie ICPC contestants, the term ‘Euler Phi’ is a familiar

term, but for others, the term does not ring any bell. Perhaps because he has not learnt it before, or

perhaps the term is different in his native language. In this chapter, we want to make a more level-

playing field for the readers by listing common mathematic terminologies, definitions, problems,

and algorithms that frequently appear in programming contests.

5.2 Ad Hoc Mathematics Problems

We start this chapter by mentioning Ad Hoc mathematics problems. They are basically contest

problems involving mathematics that requires no more than basic programming skills.

Programming Exercises related to Ad Hoc Mathematics:

1. UVa 344 - Roman Numerals (conversion from roman numerals to decimal and vice versa)

2. UVa 377 - Cowculations (base 4 operations)

3. UVa 10346 - Peter’s Smoke (simple math)

4. UVa 10940 - Throwing Cards Away II (find pattern using brute force, then use the pattern)

5. UVa 11130 - Billiard bounces (use billiard table reflection technique)

6. UVa 11231 - Black and White Painting (use the O(1) formula once you spot the pattern)

7. UVa 11313 - Gourmet Games (similar to UVa 10346)

8. UVa 11428 - Cubes (simple math with complete search)

9. UVa 11547 - Automatic Answer (one liner O(1) solution exists)

10. UVa 11723 - Numbering Road (simple math)

11. UVa 11805 - Bafana Bafana (very simple O(1) formula exists)

5.3 Number Theory

Mastering as many topics as possible in the field of number theory is important as some mathematics

problems becomes easy (or easier) if you know the theory behind the problems. Otherwise, either

a plain brute force attack leads to a TLE response or you simply cannot work with the given input

as it is too large without some pre-processing.

5.3.1 Prime Numbers

A natural number starting from 2: {2, 3, 4, . . .} is considered as a prime if it is only divisible by

1 or itself. The first (and the only even) prime is 2. The next prime numbers are: 3, 5, 7, 11, 13,

17, 19, 23, 29, . . . , and infinitely many more primes (proof in [20]). There are 25 primes in range

[0 . . . 100], 168 primes in [0 . . . 1000], 1000 primes in [0 . . . 7919], 1229 primes in [0 . . . 10000], etc...

94

5.3. NUMBER THEORY c© Steven & Felix, NUS

Prime number is an important topic in number theory and the source for many programming

problems1. In this section, we will discuss algorithms involving prime numbers.

Optimized Prime Testing Function

The first algorithm presented in this section is for testing whether a given natural number N is

prime, i.e. bool isPrime(N). The most näıve version is to test by definition, i.e. test if N is

divisible by divisor ∈ [2 . . . N -1]. This of course works, but runs in O(N) – in terms of number of

divisions. This is not the best way and there are several possible improvements.

The first improvement is to test if N is divisible by a divisor ∈ [2 . . .
√
N], i.e. we stop when

the divisor is already greater than
√
N . This is because if N is divisible by p, then N = p × q. If

q were smaller than p, then q or a prime factor of q would have divided N earlier. This is O(
√
N)

which is already much faster than previous version, but can still be improved to be twice faster.

The second improvement is to test if N is divisible by divisor ∈ [3, 5, 7 . . .
√
N], i.e. we only

test odd numbers up to
√
N . This is because there is only one even prime number, i.e. number 2,

which can be tested separately. This is O(
√
N/2), which is also O(

√
N).

The third improvement2 which is already good enough for contest problems is to test if N is

divisible by prime divisors ≤ √
N . This is because if a prime number X cannot divide N , then

there is no point testing whether multiples of X divide N or not. This is faster than O(
√
N) which

is about O(|#primes ≤ √
N |). For example, there are 500 odd numbers in [1 . . .

√
(106)], but there

are only 168 primes in the same range. The number of primes ≤ M – denoted by π(M) – is bounded

by O(M/(ln(M)− 1)), so the complexity of this prime testing function is about O(
√
N/ ln(

√
N)).

The code is shown in the next discussion below.

Sieve of Eratosthenes: Generating List of Prime Numbers

If we want to generate a list of prime numbers between range [0 . . . N], there is a better algorithm

than testing each number in the range whether it is a prime or not. The algorithm is called ‘Sieve

of Eratosthenes’ invented by Eratosthenes of Alexandria. It works as follows.

First, it sets all numbers in the range to be ‘probably prime’ but set numbers 0 and 1 to be

not prime. Then, it takes 2 as prime and crosses out all multiples3 of 2 starting from 2 × 2 = 4,

6, 8, 10, ... until it the multiple is greater than N . Then it takes the next non-crossed number 3

as a prime and crosses out all multiples of 3 starting from 3× 3 = 9, 12, 15, 18, Then it takes

5 and crosses out all multiples of 5 starting from 5 × 5 = 25, 30, 35, 40, After that, whatever

left uncrossed within the range [0 . . . N] are primes. This algorithm does approximately (N× (1/2

+ 1/3 + 1/5 + 1/7 + ... + 1/last prime in range ≤ N)) operations. Using ‘sum of reciprocals of

primes up to n’, we end up with the time complexity of roughly O(N log logN) [44].

Since generating a list of small primes ≤ 10K using the sieve is fast (our library code below can

go up to 107 under contest setting), we opt sieve for smaller primes and reserve optimized prime

testing function for larger primes – see previous discussion. The combined code is as follows:

1In real life, large primes are used in cryptography because it is hard to factor a number xy into x× y when both
are relatively prime.

2This is a bit recursive – testing whether a number is a prime by using another (smaller) prime numbers. But the
reason should be obvious after reading the next section.

3Common sub-optimal implementation is to start from 2 × i instead of i × i, but the difference is not that much.

95

5.3. NUMBER THEORY c© Steven & Felix, NUS

#include <bitset> // compact STL for Sieve, more efficient than vector<bool>!

ll _sieve_size; // ll is defined as: typedef long long ll;

bitset<10000010> bs; // 10^7 + small extra bits should be enough for most prime-related problems

vi primes; // compact list of primes in form of vector<int>

void sieve(ll upperbound) { // create list of primes in [0 .. upperbound]

_sieve_size = upperbound + 1; // add 1 to include upperbound

bs.reset(); bs.flip(); // set all numbers to 1

bs.set(0, false); bs.set(1, false); // except index 0 and 1

for (ll i = 2; i <= _sieve_size; i++) if (bs.test((size_t)i)) {

// cross out multiples of i starting from i * i!

for (ll j = i * i; j <= _sieve_size; j += i) bs.set((size_t)j, false);

primes.push_back((int)i); // also add this vector containing list of primes

}

} // call this method in main method

bool isPrime(ll N) { // a good enough deterministic prime tester

if (N < _sieve_size) return bs.test(N); // O(1) for small primes

REP (i, 0, primes.size() - 1) if (N % primes[i] == 0) return false;

return true; // it takes longer time if N is a large prime!

} // Note: only work for N <= (last prime in vi "primes")^2

// in int main()

sieve(10000000); // can go up to 10^7

printf("%d\n", isPrime(5915587277)); // 10 digit prime

Optimized Trial Divisions for Finding Prime Factors

In number theory, we know that a prime numberN only have 1 and itself as factors but a composite

numbers N , i.e. the non-primes, can be written uniquely it as a multiplication of its prime factors.

That’s it, prime numbers are multiplicative building blocks of integers. For example, N = 240 =

2× 2× 2× 2× 3× 5 = 24 × 3× 5 (the latter form is called prime-power factorization).

A näıve algorithm generates a list of primes (e.g. with sieve) and check how many of them can

actually divide the integer N – without changing N . This can be improved!

A better algorithm utilizes a kind of Divide and Conquer spirit. An integer N can be expressed

as: N = PF × N ′, where PF is a prime factor and N ′ is another number which is N/PF – i.e.

we can reduce the size of N by taking out its factor PF . We can keep doing this until eventually

N ′ = 1. Special case if N is actually a prime number. The code template below takes in an integer

N and return the list of prime factors – see code below.

vi primeFactors(int N) {

vi factors; // vi "primes" (generated by sieve) is optional

int PF_idx = 0, PF = primes[PF_idx]; // using PF = 2, 3, 4, ..., is also ok.

while (N != 1 && (PF * PF <= N)) { // stop at sqrt(N), but N can get smaller

while (N % PF == 0) { N /= PF; factors.push_back(PF); } // remove this PF

PF = primes[++PF_idx]; // only consider primes!

}

if (N != 1) factors.push_back(N); // special case if N is actually a prime

return factors;

}

96

5.3. NUMBER THEORY c© Steven & Felix, NUS

// in int main()

sieve(100); // prepare list of primes [0 .. 100]

vi result = primeFactors(10000); // with that, we can factor up to 100^2 = 10000

vi::iterator last = unique(result.begin(), result.end()); // to remove duplicates

for (vi::iterator i = result.begin(); i != last; i++) // output: 2 and 5

printf("%d\n", *i);

In the worst case – when N is prime, this prime factoring algorithm with trial division requires

testing all smaller primes up to
√
N , mathematically denoted as O(π(

√
N)) = O(

√
N/ln

√
N).

However, if given composite numbers, this algorithm is reasonably fast.

Programming Exercises about Prime Numbers problems:

1. UVa 294 - Divisors

2. UVa 406 - Prime Cuts

3. UVa 516 - Prime Land

4. UVa 524 - Prime Ring Problem (requires backtracking)

5. UVa 543 - Goldbach’s Conjecture

6. UVa 583 - Prime Factors

7. UVa 686 - Goldbach’s Conjecture (II)

8. UVa 897 - Annagramatic Primes

9. UVa 914 - Jumping Champion

10. UVa 993 - Product of digits

11. UVa 10006 - Carmichael Numbers

12. UVa 10042 - Smith numbers

13. UVa 10140 - Prime Distances

14. UVa 10200 - Prime Time

15. UVa 10235 - Simply Emirp (reverse prime)

16. UVa 10311 - Goldbach and Euler

17. UVa 10394 - Twin Primes (adjacent primes)

18. UVa 10533 - Digit Primes

19. UVa 10539 - Almost Prime Numbers

20. UVa 10637 - Coprimes

21. UVa 10650 - Determinate Prime (find 3 consecutive primes that are uni-distance)

22. UVa 10699 - Count the Factors

23. UVa 10738 - Riemann vs. Mertens

24. UVa 10789 - Prime Frequency

25. UVa 10852 - Less Prime

26. UVa 10924 - Prime Words

27. UVa 10948 - The Primary Problem

28. UVa 11287 - Pseudoprime Numbers

29. UVa 11408 - Count DePrimes

30. UVa 11466 - Largest Prime Divisor

97

5.3. NUMBER THEORY c© Steven & Felix, NUS

5.3.2 Greatest Common Divisor (GCD) & Least Common Multiple (LCM)

The Greatest Common Divisor (GCD) of two integers (a, b) denoted by gcd(a, b), is defined as the

largest positive integer d such that d | a and d | b where x | y implies that x divides y. Example

of GCD: gcd(4, 8) = 4, gcd(10, 5) = 5, gcd(20, 12) = 4. One practical usage of GCD is to simplify

fraction, e.g. 4
8 = 4/gcd(4,8)

8/gcd(4,8) =
4/4
8/4 = 1

2 .

To find the GCD between two integers is an easy task with an effective Euclid algorithm [20, 4]

which can be implemented as a one liner code (see below). Thus finding the GCD is usually not

the actual issue in a Math-related contest problem, but just part of the bigger solution.

The GCD is closely related to Least (or Lowest) Common Multiple (LCM). The LCM of two

integers (a, b) denoted by lcm(a, b), is defined as the smallest positive integer l such that a | l and
b | l. Example of LCM: lcm(4, 8) = 8, lcm(10, 5) = 10, lcm(20, 12) = 60. It has been shown [20]

that: lcm(a, b) = a× b/gcd(a, b). This can also be implemented as a one liner code (see below).

int gcd(int a, int b) { return (b == 0 ? a : gcd(b, a % b)); }

int lcm(int a, int b) { return (a * (b / gcd(a, b))); } // divide before multiply!

The GCD of more than 2 numbers, e.g. gcd(a, b, c) is equal to gcd(a, gcd(b, c)), etc, and similarly

for LCM. Both GCD and LCM algorithms run in O(log10 n), where n = max(a, b).

Programming Exercises related to GCD and/or LCM:

1. UVa 332 - Rational Numbers from Repeating Fractions

2. UVa 412 - Pi

3. UVa 530 - Binomial Showdown

4. UVa 10193 - All You Need Is Love

5. UVa 10407 - Simple Division

6. UVa 10680 - LCM

7. UVa 10717 - Mint (requires Complete Search on top of LCM/GCD)

8. UVa 10791 - Minimum Sum LCM (prime factorization + tricky cases)

9. UVa 10892 - LCM Cardinality

10. UVa 11388 - GCD LCM (must understand the relationship between GCD and LCM)

11. UVa 11417 - GCD

5.3.3 Euler’s Totient (Phi) Function

Now that we have discussed prime number and GCD, we can define relatively prime. Two

integers a and b are said to be relatively prime if gcd(a, b) = 1, e.g. 25 and 42.

There is an interesting problem of finding positive integers below N that are relatively prime

to N (see programming exercises below). A näıve algorithm starts with counter = 0, iterates

through i ∈ [1 . . . N], and increases the counter if gcd(i,N) = 1, but this is slow for a large N .

A better algorithm is the Euler’s Totient (Phi) function [36]. The Euler’s Phi ϕ(N) is a function

to compute the solution for the problem posed above. ϕ(N) = N×∏
PF (1− 1

PF), where we iterate

through all prime factors of N . For example N = 36 = 22×32. ϕ(36) = 36× (1− 1
2)× (1− 1

3) = 12.

98

5.3. NUMBER THEORY c© Steven & Felix, NUS

In fact, there are only 12 integers less than equal to 36 that are relatively prime to 36. They

are 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, and 35. As we need to factor N , the complexity of

this algorithm is similar with the complexity of factoring an integer with trial division mentioned

earlier. The code is below.

int EulerPhi(int N) {

vi factors = primeFactors(N);

vi::iterator new_end = unique(factors.begin(), factors.end()); // get unique

int result = N;

for (vi::iterator i = factors.begin(); i != new_end; i++)

result = result - result / *i;

return result;

}

Programming Exercises related to Euler’s Totient (Phi) Function:

1. UVa 10179 - Irreducible Basic Fractions (direct application of Euler’s Phi function)

2. UVa 10299 - Relatives (another direct application of Euler’s Phi function)

3. UVa 10820 - Send A Table (a[i] = a[i - 1] + 2 ×ϕ(i))

4. UVa 11064 - Number Theory

5. UVa 11327 - Enumerating Rational Numbers

5.3.4 Extended Euclid: Solving Linear Diophantine Equation

Motivating problem: Suppose a housewife buys apples and oranges at a total cost of 8.39 SGD. If

an apple is 25 cents and an orange is 18 cents, how many of each type of fruit does she buys?

This problem can be modeled as a linear equation with two variables: 25x + 18y = 839. Since

we know that both x and y must be integers, this linear equation is called the Linear Diophantine

Equation. We can solve Linear Diophantine Equation with two variables even if we only have one

equation! This is different from System of Linear Equations discussed later in Section 5.5.5. The

solution for the Linear Diophantine Equation is as follow [20].

Let a and b be integers with d = gcd(a, b). The equation ax+ by = c has no integral solutions

if d | c is not true. But if d | c, then there are infinitely many integral solutions. The first solution

(x0, y0) can be found using the Extended Euclid algorithm shown below (also see [4], Chapter 31),

and the rest can be derived from x = x0 + (b/d)n, y = y0 − (a/d)n, where n is an integer.

// store x, y, and d as global variables

void extendedEuclid(int a, int b) {

if (b == 0) { x = 1; y = 0; d = a; return; }

extendedEuclid(b, a % b);

int x1 = y;

int y1 = x - (a / b) * y;

x = x1;

y = y1;

}

99

5.3. NUMBER THEORY c© Steven & Felix, NUS

Using extendedEuclid, the Linear Diophantine Equation with two variables can be easily solved.

For our motivating problem above: 25x+ 18y = 839, we have:

a = 25, b = 18, extendedEuclid(25, 18) = ((−5, 7), 1), or

25× (−5) + 18× 7 = 1.

Multiplying the left and right hand side of the equation above by 839/gcd(25, 18) = 839, we have:

25× (−4195) + 18× 5873 = 839. Thus,

x = −4195 + (18/1)n, y = 5873 − (25/1)n.

Since we need to have non-negative x and y, we have:

−4195 + 18n ≥ 0 and 5873 − 25n ≥ 0, or

4195/18 ≤ n ≤ 5873/25, or

233.05 ≤ n ≤ 234.92.

The only possible integer for n is 234.

Thus x = −4195 + 18× 234 = 17 and y = 5873 − 25× 234 = 23,

i.e. 17 apples (of 25 cents each) and 23 oranges (of 18 cents each) of a total of 8.39 SGD.

Programming Exercises related to Extended Euclid algorithm:

1. UVa 718 - Skycraper Floors

2. UVa 10090 - Marbles (use solution for Linear Diophantine Equation)

3. UVa 10104 - Euclid Problem (pure problem involving Extended Euclid)

5.3.5 Modulo Arithmetic

Some mathematics computations in programming problems can end up having very large positive

(or very small negative) results that reside the range of largest integer data type (currently the

64-bit long long in C++). Sometimes, we are only interested with the result modulo a number.

For example in UVa 10176 - Ocean Deep! Make it shallow!!, we are asked to convert a long

binary number (up to 100 digits) to decimal. A quick calculation shows that the largest possible

number is 2100 − 1 which is beyond the reach of 64-bit integers. However, the problem only ask if

the result is divisible by 131071. So what we need to do is to convert binary to decimal digit by

digit, and then quickly perform modulo operation to the intermediate result by 131071. If the final

result is 0, then the actual number in binary (which we never compute), is divisible by 131071.

Programming Exercises related to Modulo Arithmetic:

1. UVa 374 - Big Mod

2. UVa 602 - What Day Is It?

3. UVa 10174 - Couple-Bachelor-Spinster Numbers

4. UVa 10176 - Ocean Deep! Make it shallow!! (as discussed above)

5. UVa 10212 - The Last Non-zero Digit

6. UVa 10489 - Boxes of Chocolates

7. LA 4104 - MODEX

100

5.3. NUMBER THEORY c© Steven & Felix, NUS

5.3.6 Fibonacci Numbers

Leonardo Fibonacci’s numbers are defined as fib(0) = 0, fib(1) = 1, and fib(n) = fib(n − 1) +

fib(n−2) for n ≥ 2. This generates the following familiar patterns: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

89, . . . which can be derived with an O(n) DP technique. This pattern sometimes appears in some

contest problems which do not mention the term ‘Fibonacci’ at all, like in some problems shown as

exercises below (e.g. UVa 900, etc). Note that Fibonacci sequence grows very fast and sometime

problems involving Fibonacci have to be solved using Java BigInteger library (see Section 5.4 for a

quick solution involving large integers).

Fibonacci numbers have many interesting properties. One of them is the Zeckendorf’s the-

orem: every positive integer can be written in a unique way as a sum of one or more distinct

Fibonacci numbers such that the sum does not include any two consecutive Fibonacci numbers.

Programming Exercises related to Fibonacci:

1. UVa 495 - Fibonacci Freeze (use Java BigInteger class)

2. UVa 763 - Fibinary Numbers (Zeckendorf representation)

3. UVa 900 - Brick Wall Patterns (Combinatorics, the pattern is similar to Fibonacci)

4. UVa 948 - Fibonaccimal Base (Zeckendorf representation)

5. UVa 10183 - How many Fibs?

6. UVa 10229 - Modular Fibonacci

7. UVa 10334 - Ray Through Glasses (use Java BigInteger class)

8. UVa 10450 - World Cup Noise (Combinatorics, the pattern is similar to Fibonacci)

9. UVa 10497 - Sweet Child Make Trouble (Combinatorics, the pattern is Fibonacci variant)

10. UVa 10579 - Fibonacci Numbers

11. UVa 10862 - Connect the Cable Wires (the pattern ends up very similar to Fibonacci)

12. UVa 11000 - Bee

13. UVa 11161 - Help My Brother (II) (Fibonacci + median)

14. UVa 11780 - Miles 2 Km (the background of this problem is about Fibonacci Numbers)

5.3.7 Factorial

Factorial of n, i.e. fac(n) is defined as 1 if n = 0 or n × fac(n− 1) if n > 0. Factorial also grows

very fast and may also need Java BigInteger library (Section 5.4).

Programming Exercises related to Factorial:

1. UVa 160 - Factors and Factorials

2. UVa 324 - Factorial Frequencies

3. UVa 568 - Just the Facts

4. UVa 623 - 500! (use Java BigInteger class)

5. UVa 884 - Factorial Factors

101

5.4. JAVA BIGINTEGER CLASS c© Steven & Felix, NUS

6. UVa 10061 - How many zeros & how many digits? (there exists a formula for this)

7. UVa 10139 - Factovisors (there exists a formula for this)

8. UVa 10858 - Recover Factorial

9. UVa 10220 - I Love Big Numbers! (use Java BigInteger class)

10. UVa 10323 - Factorial! You Must Be Kidding

11. UVa 10780 - Again Prime? No time.

12. UVa 11347 - Multifactorials

13. UVa 11415 - Count the Factorials

5.4 Java BigInteger Class

5.4.1 Basic Features

When intermediate and/or final results of an integer-based mathematics computation cannot be

stored in the largest built-in integer data type and the given problem does not use any modulo arith-

metic technique, we have to resort to BigInteger (sometimes also called as BigNum) libraries. A sim-

ple example: try to compute 25! (factorial of 25). The result is 15,511,210,043,330,985,984,000,000

which is beyond the capacity of 64-bit unsigned long long in C/C++.

The way the BigInteger library works is to store the big integer as a (long) string. For example we

can store 1021 inside a string num1 = “1,000,000,000,000,000,000,000” without problem whereas this

is already overflow in a 64-bit unsigned long long in C/C++. Then, for common mathematical

operations, the BigInteger library uses a kind of digit by digit operations to process the two big

integer operands. For example with num2 = “17”, we have num1 * num2 as:

num1 = 1,000,000,000,000,000,000,000

num2 = 17

------------------------------ *

7,000,000,000,000,000,000,000

10,000,000,000,000,000,000,00

------------------------------ +

num1 * num2 = 17,000,000,000,000,000,000,000

Addition and subtraction are two simpler operations in BigInteger. Multiplication takes a bit more

programming job. Efficient division and raising number to a certain power are more complicated.

Anyway, coding these library routines in C/C++ under stressful contest environment can be a

buggy affair, even if we can bring notes containing such C/C++ library in ICPC. Fortunately, Java

has a BigInteger class that we can use for this purpose (as of 9 August 2010, C++ STL currently

does not have such library thus it is a good idea to use Java for BigInteger problems).

The Java BigInteger (BI) class supports the following basic integer operations: addition –

add(BI), subtraction – subtract(BI), multiplication – multiply(BI), division – divide(BI),

remainder – remainder(BI), combination of division and remainder – divideAndRemainder(BI),

modulo – mod(BI) (slightly different to remainder(BI)), and power – pow(int exponent). For

example, the following short Java code is the solution for UVa 10925 - Krakovia which simply

requires BigInteger addition (to sum N large bills) and division (to divide the large sum to F

friends).

102

5.4. JAVA BIGINTEGER CLASS c© Steven & Felix, NUS

import java.io.*;

import java.util.*; // Scanner class is inside this package

import java.math.*; // BigInteger class is inside this package

class Main { /* UVa 10925 - Krakovia */

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

int caseNo = 1;

while (true) {

int N = sc.nextInt(), F = sc.nextInt(); // N bills, F friends

if (N == 0 && F == 0) break;

BigInteger sum = BigInteger.valueOf(0); // use valueOf to initialize

for (int i = 0; i < N; i++) { // sum the N large bills

BigInteger V = sc.nextBigInteger(); // for reading next BigInteger!

sum = sum.add(V); // this is BigInteger addition

}

System.out.println("Bill #" + (caseNo++) + " costs " +

sum + ": each friend should pay " + sum.divide(BigInteger.valueOf(F)));

System.out.println(); // the line above is BigInteger division

} } } // divide the large sum to F friends

5.4.2 Bonus Features

The Java BigInteger class has a few more bonus features that can be useful in programming

contests. It happens to have a built-in GCD routine gcd(BI), a modular arithmetic function

modPow(BI exponent, BI m), and Base Number converter toString(int radix).

GCD Revisited

When we need to compute the GCD of two big integers, we do not have to worry. See an example

below for UVa 10814 - Simplifying Fractions that ask us to simplify a given (large) fraction to its

simplest form by dividing both numerator and denominator with the gcd between them.

import java.io.*;

import java.util.*;

import java.math.*;

class Main { /* UVa 10814 - Simplifying Fractions */

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

int N = sc.nextInt();

while (N-- > 0) {

BigInteger p = sc.nextBigInteger();

String ch = sc.next(); // ignore this one

BigInteger q = sc.nextBigInteger();

BigInteger gcd_pq = p.gcd(q); // wow :)

System.out.println(p.divide(gcd_pq) + " / " + q.divide(gcd_pq));

} } }

Modulo Arithmetic Revisited

One of the problems presented in the previous section is LA 4104 - MODEX. We are asked to find

what is the value of xy(mod n). It turns out that this problem can be solved with:

103

5.4. JAVA BIGINTEGER CLASS c© Steven & Felix, NUS

import java.io.*;

import java.util.*;

import java.math.*;

class Main { /* LA 4104 - MODEX */

public static void main(String[] args) {

Scanner sc new Scanner(System.in);

int nTC = sc.nextInt();

while (nTC-- > 0) {

BigInteger x = BigInteger.valueOf(scan.nextInt());

BigInteger y = BigInteger.valueOf(scan.nextInt());

BigInteger n = BigInteger.valueOf(scan.nextInt());

System.out.println(x.modPow(y, n)); // look ma, it’s in the library ;)

} } }

Base Number Conversion

The base number conversion is actually a not-so-difficult4 mathematical problem, but this problem

becomes even simpler with Java BigInteger class. We can construct and print a big integer in any

base (radix) as shown below:

import java.io.*;

import java.util.*;

import java.math.*;

class Main { /* UVa 10551 - Basic Remains */

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

while (true) {

int b = sc.nextInt();

if (b == 0) break;

String p_str = sc.next();

BigInteger p = new BigInteger(p_str, b); // special constructor!

String m_str = sc.next();

BigInteger m = new BigInteger(m_str, b); // 2nd parameter is the radix/base

System.out.println((p.mod(m)).toString(b)); // can output in any radix/base

} } }

Programming Exercises related to Big Integer that are not mentioned elsewhere in this chapter.

1. UVa 343 - What Base Is This? (number base conversion)

2. UVa 355 - The Bases Are Loaded (number base conversion)

3. UVa 389 - Basically Speaking (number base conversion)

4. UVa 424 - Integer Inquiry (bignum addition)

5. UVa 446 - Kibbles ’n’ Bits ’n’ Bits ’n’ Bits (number base conversion)

6. UVa 636 - Squares (number base conversion++)

7. UVa 10083 - Division (bignum + number theory)

8. UVa 10551 - Basic Remains (bignum mod and base conversion)

4For example: (132)8 is 1 × 82 + 3 × 81 + 2 × 80 = 64 + 24 + 2 = (90)10 and (90)10 is 90 (keep dividing by 2)
→ 45(0) → 22(1) → 11(0) → 5(1) → 2(1) → 1(0) → 0(1) = (1011010)2 (read backwards).

104

5.5. MISCELLANEOUS MATHEMATICS PROBLEMS c© Steven & Felix, NUS

9. UVa 10814 - Simplifying Fractions (bignum gcd)

10. UVa 10106 - Product (bignum multiplication)

11. UVa 10473 - Simple Base Conversion (number base conversion)

12. UVa 10523 - Very Easy!!! (bignum addition, multiplication, and power)

13. UVa 10925 - Krakovia (bignum addition and division)

14. LA 4104 - MODEX (bignum modPow)

5.5 Miscellaneous Mathematics Problems

In this section, we list down a few more mathematics problems that have been used a few times

in some programming contests. Mastering the solutions for these problems can be an advantage

if you are given similar problem or problem that uses these knowledge as part of solution for the

problem. The terms mentioned here also act as keywords for further study.

5.5.1 Combinatorics

Combinatorics [31] is a branch of discrete mathematics concerning the study of finite or count-

able discrete structures. Programming problems involving combinatorics usually titled ‘How Many

[Object]’, ‘Count [Object]’, etc, although some problem setters choose to hide this fact from their

problem title. The code is usually short, but finding the recurrence formula takes some mathemat-

ics brilliance and patience. In ICPC, if such problem exists in the given problem set, ask one team

member to derive the formula whereas the other two concentrates on other problems. Quickly code

the usually short formula once it is obtained.

For example, try solving UVa 10401 - Triangle Counting. This problem has a short description:

“given n rods of length 1, 2, . . . , n, pick any 3 of them & build a triangle. How many distinct

triangles can you make? (3 ≤ n ≤ 1M) ”. Note that, two triangles will be considered different if

they have at least one pair of arms with different lengths. If you are lucky, you may spend only a

few minutes to spot the pattern. Otherwise, this problem may end up unsolved by the time contest

is over. Hint: answers for few small n = 3, 4, 5, 6, 7, 8, 9, and 10 are 0, 1, 3, 7, 13, 22, 34, and 50,

respectively.

Programming Exercises related to Combinatorics (also see Fibonacci Numbers above):

1. UVa 326 - Extrapolation using a Difference Table

2. UVa 369 - Combinations (be careful with overflow issue)

3. UVa 991 - Safe Salutations (Catalan Numbers)

4. UVa 10007 - Count the Trees (Catalan Numbers, see [30] for details)

5. UVa 10219 - Find the Ways! (use Java BigInteger class)

6. UVa 10303 - How Many Trees (Catalan Numbers)

7. UVa 10375 - Choose and Divide

8. UVa 10784 - Diagonal

9. UVa 10790 - How Many Points of Intersection?

105

5.5. MISCELLANEOUS MATHEMATICS PROBLEMS c© Steven & Felix, NUS

10. UVa 10918 - Tri Tiling

11. UVa 11069 - A Graph Problem

12. UVa 11115 - Uncle Jack (ND, use Java BigInteger class)

13. UVa 11204 - Musical Instruments (only 1st choice matters)

14. UVa 11310 - Delivery Debacle

15. UVa 11401 - Triangle Counting (spot the pattern, coding is easy)

16. UVa 11554 - Hapless Hedonism (similar to UVa 11401)

5.5.2 Cycle-Finding

Cycle-finding [32] is a problem of finding a cycle in a sequence of iterated function values.

For any function f : S → S and any initial value x0 ∈ S, the sequence of iterated function values:

x0, x1 = f(x0), x2 = f(x1), . . . , xi = f(xi−1), . . . must eventually use the same value twice (cycle),

i.e. ∃i �= j such that xi = xj . Once this happens, the sequence must repeat the cycle of values from

xi to xj−1. We let μ as the smallest index i and let λ (the loop length) be the smallest positive

integer such that xμ = xμ+λ. The cycle-finding is the problem of finding μ and λ, given f and x0.

For example in UVa 350 - Pseudo-Random Numbers, we are given a pseudo-random number

generator f(x) = (Z × x+ I)%M with x0 = L and we want to find out the sequence length before

any number is repeated.

A näıve algorithm that works in general for this problem uses a data structure (e.g. C++ STL

<set>, hash table or direct addressing table) to store information that a number xi has been

visited in the sequence and then for each xj found later (j > i), we test if xj is stored in the data

structure or not. If it is, it implies that xj = xi, μ = i, λ = j − i. This algorithm runs in O(μ+ λ)

but also requires at least O(μ+ λ) space to store past values.

There is a better algorithm called Floyd’s Cycle-Finding algorithm [32] that runs in the same

O(μ+λ) time complexity but only uses O(1) memory space – much smaller than the näıve version.

The working C/C++ implementation of this algorithm is shown below:

pair<int, int> floyd_cycle_finding(int (*f)(int), int x0) {

// The main phase of the algorithm, finding a repetition x_i = x_2i, hare speed is 2x tortoise’s

int tortoise = f(x0), hare = f(f(x0)); // f(x0) is the element/node next to x0

while (tortoise != hare) { tortoise = f(tortoise); hare = f(f(hare)); }

// Find the position of mu, the hare and tortoise move at the same speeds

int mu = 0; hare = tortoise; tortoise = x0;

while (tortoise != hare) { tortoise = f(tortoise); hare = f(hare); mu += 1; }

// Find the length of the shortest cycle starting from x_mu, hare moves, tortoise stays

int lambda = 1; hare = f(tortoise);

while (tortoise != hare) { hare = f(hare); lambda += 1; }

return make_pair(mu, lambda);

}

Programming Exercises related to Cycle-Finding:

1. UVa 350 - Pseudo-Random Numbers (straightforward application of floyd’s cycle-finding)

2. UVa 408 - Uniform Generator

106

5.5. MISCELLANEOUS MATHEMATICS PROBLEMS c© Steven & Felix, NUS

3. UVa 944 - Happy Numbers (similar to UVa 10591)

4. UVa 10591 - Happy Number

5. UVa 11036 - Eventually periodic sequence

6. UVa 11053 - Flavius Josephus Reloaded

7. UVa 11549 - Calculator Conundrum

5.5.3 Existing (or Fictional) Sequences and Number Systems

Some Ad Hoc mathematic problems involve a definition of existing (or fictional) number Sequence

or Number System and our task is to produce either the sequence/number within some range

or the n-th one, verify if the given sequence/number is valid according to definition, etc. Usually,

following the description carefully is sufficient to solve the problem.

Programming Exercises related to Sequences and Number Systems:

• Sequences

1. UVa 100 - The 3n + 1 problem

2. UVa 413 - Up and Down Sequences

3. UVa 694 - The Collatz Sequence (similar to UVa 100)

4. UVa 10408 - Farey Sequences

5. UVa 10930 - A-Sequence

6. UVa 11063 - B2 Sequences

• Number Systems

1. UVa 136 - Ugly Numbers

2. UVa 138 - Street Numbers

3. UVa 443 - Humble Numbers

4. UVa 640 - Self Numbers (DP)

5. UVa 962 - Taxicab Numbers (Pre-calculate the answer)

6. UVa 974 - Kaprekar Numbers

7. UVa 10001 - Bangla Numbers

8. UVa 10006 - Carmichael Numbers

9. UVa 10042 - Smith Numbers

10. UVa 10044 - Erdos Numbers (solvable with BFS)

11. UVa 10591 - Happy Number (solvable with the Floyd’s Cycle-Finding algorithm)

12. UVa 11461 - Square Numbers

13. UVa 11472 - Beautiful Numbers

107

5.6. CHAPTER NOTES c© Steven & Felix, NUS

5.5.4 Probability Theory

Probability Theory is a branch of mathematics concerned with analysis of random phenomena.

Although an event like an individual coin toss is random, if it is repeated many times the sequence

of random events will exhibit certain statistical patterns, which can be studied and predicted.

In programming contests, such problems are either solve-able with some closed-form formula,

or one has no choice than to enumerate the complete search space.

Programming Exercises related to Probability:

1. UVa 474 - Heads Tails Probability

2. UVa 542 - France 98

3. UVa 10056 - What is the Probability?

4. UVa 10491 - Cows and Cars

5. UVa 11176 - Winning Streak

6. UVa 11181 - Probability|Given

7. UVa 11500 - Vampires

5.5.5 Linear Algebra

A linear equation is defined as an equation where the order of the unknowns (variables) is linear

(a constant or a product of a constant plus the first power of an unknown), e.g. X + Y = 2.

System of linear equations is defined as a collection of n unknowns (variables) in n linear

equations, e.g. X + Y = 2 and 2X + 5Y = 6, where the solution is X = 11
3 , Y = 2

3 . Notice the

difference to the linear diophantine equation as the solution for system of linear equations

can be non-integers!

There are several ways to find the solution for a system of linear equations. One of them is

‘Gaussian Elimination’. See [5, 37] for details.

Programming Exercises related to Linear Algebra:

1. UVa 10089 - Repackaging

2. UVa 10109 - Solving Systems of Linear Equations

3. UVa 10309 - Turn the Lights Off

5.6 Chapter Notes

We admit that there are still a lot of other mathematics problems and algorithms beyond this

chapter. This last section provides pointers for a few more topics.

For an even faster prime testing function than the one presented here, one can use the

non deterministic Miller-Rabin’s algorithm [41] – which can be made deterministic for contest

environment with a known maximum input size N .

108

5.6. CHAPTER NOTES c© Steven & Felix, NUS

In this chapter, we have seen a quite effective trial division method for finding prime factors

of an integer. For a faster integer factorization, one can use the Pollard’s rho algorithm [4].

However, if the integer to be factored is a large prime number, then this is still a slow business.

This fact is the security part in modern cryptography techniques.

There are other theorem, hypothesis, and conjectures about prime numbers, e.g. Carmichael’s

function, Riemann’s hypothesis, Goldbach’s conjecture, twin prime conjecture, etc. However, when

such things appear in programming contests, usually their definitions are given!

We can compute fib(n) in O(log n) using matrix multiplication, but this is usually not needed

in contest setting unless the problem setter use a very big n.

Other mathematics problems that may appear in programming contests are those involving:

Chinese Remainder Theorem (e.g. UVa 756 - Biorhythms), Divisibility properties (e.g. UVa

995), Pascal’s Triangle, Combinatorial Games (e.g. the Sprague-Grundy’s theorem for

games like UVa 10165 - Stone Game (Nim game), Chess, Tic-Tac-Toe, etc), problems involving

non-conventional Grid system (e.g. UVa 10182 - Bee Maja), etc.

Note that (Computational) Geometry is also part of Mathematics, but since we have a special

chapter for that, we reserve the discussions related to geometry problems in Chapter 7.

In terms of doing well in ICPC, it is a good idea to have at least one strong mathematician in

your ICPC team. This is because there usually exists one or two mathematics problems in the set

where the solution is short but getting the solution/formula requires a strong thinking cap.

We suggest that interested readers should browse more about number theory – see books like

[20], http://mathworld.wolfram.com/, Wikipedia and do more programming exercises related to

mathematics problems, visit http://projecteuler.net/ [7].

There are approximately 175 programming exercises discussed in this chapter.

109

Chapter 6

String Processing

Human Genome has approximately 3.3 Giga base-pairs

— Human Genome Project

In this chapter, we present one more topic that is tested in ICPC, namely: string processing. Processing

(long) string is quite common in the research field of bioinformatics and some of such problems are presented

as contest problems in ICPC.

6.1 Overview and Motivation

Although not as frequent as graph and mathematics problems in the previous two chapters, string

processing problems are also found in recent ICPCs (see Table 6.1). Some string-related problems

have huge inputs. Thus the solution must use efficient data structures and algorithms for string.

LA Problem Name Source String Problem (Algorithm)

2460 Searching Sequence ... Singapore01 Classical String Alignment Problem (DP)

2972 A DP Problem Tehran03 Tokenize Linear Equation

3170 AGTC Manila06 Classical String Edit Problem (DP)

3669 String Cutting Hanoi06 Ad Hoc String Processing

3791 Team Arrangement Tehran06 Ad Hoc String Processing

3901 Editor Seoul07 Longest Repeated Substring

3999 The longest constant gene Danang07 Longest Common Substring of >= 2 strings

4200 Find the Format String Dhaka08 Ad Hoc String Processing

4657 Top-10 Jakarta09 Suffix Array + Segment Tree

Table 6.1: Some String Processing Problems in Recent ACM ICPC Asia Regional

6.2 Ad Hoc String Processing Problems

We start this chapter by mentioning Ad Hoc string processing problems. They are contest problems

involving string that require no more than basic programming skills. We only need to read the

requirements in the problem description carefully and code it. Sometimes, pure character array

(a.k.a. string) manipulation is sufficient. Sometimes, we need string libraries like C <string.h>,

110

6.2. AD HOC STRING PROCESSING PROBLEMS c© Steven & Felix, NUS

C++ <string> class, or Java String class. For example, we can use strstr in C to find certain

substring in a longer string (also known as string matching or string searching), strtok in C to

tokenize longer string into tokens based on some delimiters. Here are some examples:

Programming Exercises related to Ad Hoc String Processing:

1. UVa 148 - Anagram Checker (+ backtracking)

2. UVa 159 - Word Crosses

3. UVa 263 - Number Chains

4. UVa 353 - Pesky Palindromes

5. UVa 401 - Palindromes

6. UVa 409 - Excuses, Excuses! (string matching)

7. UVa 422 - Word Search Wonder (string searching in a grid)

8. UVa 537 - Artificial Intelligence?

9. UVa 644 - Immediate Decodability

10. UVa 865 - Substitution Cypher (simple character substitution mapping)

11. UVa 902 - Password Search

12. UVa 10010 - Where’s Waldorf? (string searching in a grid)

13. UVa 10115 - Automatic Editing

14. UVa 10197 - Learning Portuguese

15. UVa 10293 - Word Length and Frequency

16. UVa 10391 - Compound Words (Use efficient Data Structure!)

17. UVa 10508 - Word Morphing

18. UVa 10815 - Andy’s First Dictionary

19. UVa 10878 - Decode the Tape

20. UVa 10896 - Known Plaintext Attack

21. UVa 11056 - Formula 1 (involving case insensitive string comparison)

22. UVa 11062 - Andy’s Second Dictionary

23. UVa 11221 - Magic Square Palindrome (solvable without DP)

24. UVa 11233 - Deli Deli

25. UVa 11278 - One-Handed Typist

26. UVa 11362 - Phone List

27. UVa 11385 - Da Vinci Code (string manipulation + Fibonacci numbers)

28. UVa 11048 - Automatic Correction of Misspellings

29. UVa 11713 - Abstract Names (modified string comparison function)

30. UVa 11716 - Digital Fortress (simple cipher)

31. UVa 11734 - Big Number of Teams will Solve This (modified string comparison function)

However, recent contest problems in ACM ICPC usually do not ask solutions for basic string

processing except for the ‘giveaway’ problem that all teams should be able to solve. Some string

processing problems are solve-able with Dynamic Programming (DP) technique. We discuss them

in Section 6.3. Some other string processing problems have to deal with long strings, thus an

efficient data structure for string like Suffix Tree or Suffix Array must be used. We discuss these

data structures and several specialized algorithms using these data structures in Section 6.4.

111

6.3. STRING PROCESSING WITH DYNAMIC PROGRAMMING c© Steven & Felix, NUS

6.3 String Processing with Dynamic Programming

In this section, we discuss some string processing problems that solve-able with DP techniques

discussed in Section 3.4.

6.3.1 String Alignment (Edit Distance)

The String Alignment (or Edit Distance) problem is defined as follows: Given two strings A and B,

align1 A with B with the maximum alignment score (or minimum number of edit operations):

After aligning A with B, there are few possibilities between character A[i] and B[i] ∀ index i:

1. Character A[i] and B[i] match (assume we give ‘+2’ score),

2. Character A[i] and B[i] mismatch and we replace A[i] with B[i] (‘-1’ score),

3. We insert a space in A[i] (also ‘-1’ score), or

4. We delete a letter from A[i] (also ‘-1’ score).

For example:

A = ’information’ -> ’___information_’

B = ’bioinformatics’ -> ’bioinformatic_s’

---222222222--- -> String Alignment Score = 9 x 2 - 6 = 12

A brute force solution that tries all possible alignments will typically end up with a TLE verdict

for long strings A and/or B. The solution for this problem is a well-known DP solution (Needleman-

Wunsch’s algorithm [24]). Consider two strings A[1 ... n] and B[1 ... m]. We define V (i, j)

to be the score of the optimal alignment between A[1 ... i] and B[1 ... j] and score(A,B) is

the score if character A is aligned with character B.

Base case:

V (0, 0) = 0 // no score for matching two empty strings

Recurrences: For i > 0 and j > 0:

V (0, j) = V (0, j − 1) + score(, B[j]) // insert space j times to make alignment

V (i, 0) = V (i− 1, 0) + score(A[i],) // delete i times to make alignment

V (i, j) = max(option1, option2, option3), where

option1 = V (i− 1, j − 1) + score(A[i], B[j]) // score of match or mismatch

option2 = V (i− 1, j) + score(A[i],) // delete

option3 = V (i, j − 1) + score(, B[j]) // insert

In short, this DP algorithm concentrates on the three possibilities for the last pair of characters,

which must be either a match/mismatch, a deletion, or an insertion. Although we do not know

which one is the best, we can try all possibilities while avoiding re-computation of overlapping

subproblems (i.e. basically a DP technique).

xxx...xx xxx...xx xxx...x_

| | |

xxx...yy yyy...y_ yyy...yy

match/mismatch delete insert

With a simple cost function where a match gets a +2 point and mismatch, insert, delete all get

a -1 point, the detail of string alignment score of A = ’ACAATCC’ and B = ’AGCATGC’ is shown

1Align is a process of inserting spaces to strings A or B such that they have the same number of characters.

112

6.3. STRING PROCESSING WITH DYNAMIC PROGRAMMING c© Steven & Felix, NUS

Figure 6.1: String Alignment Example for A = ‘ACAATCC’ and B = ‘AGCATGC’ (score = 7)

in Figure 6.1. The alignment score is 7 (bottom right). Follow the dashed (red) arrows from the

bottom right cell to reconstruct the solution Diagonal arrow means a match or a mismatch (e.g.

the last ‘C’). Vertical arrow means a deletion (e.g. ..CAT.. to ..C_A..). Horizontal arrow means

an insertion (e.g. A_C.. to AGC..).

A = ’A_CAAT[C]C’

B = ’AGC_AT[G]C’

As we need to fill in all entries in the table of n × m matrix and each entry can be computed in

O(1), the time complexity is O(nm). The space complexity is O(nm) – the size of the DP table.

6.3.2 Longest Common Subsequence

The Longest Common Subsequence (LCS) problem is defined as follows: Given two strings A and

B, what is the longest common subsequence between them. For example, A = ’ACAATCC’ and

B = ’AGCATGC’ have LCS of length 5, i.e. ’ACATC’.

The LCS solution is very similar to String Alignment solution presented earlier. Set the cost

for mismatch as negative infinity, cost for insertion and deletion as 0, and the cost for match as 1.

This makes the String Alignment solution to never consider mismatches.

6.3.3 Palindrome

A palindrome is a string that can be read the same way in either direction. Some variants of

palindrome finding problems are solve-able with DP technique, as shown in this example: given a

string of up to 1000 characters, determine the length of the longest palindrome that you can make

from it by deleting zero or more characters. Examples:

’ADAM’ → ’ADA’ (of length 3, delete ‘M’)

’MADAM’ → ’MADAM’ (of length 5, delete nothing)

’NEVERODDOREVENING’ → ’NEVERODDOREVEN’ (of length 14, delete ‘ING’)

The DP solution: let len(l, r) be the length of the longest palindrome from string A[l ... r].

Base cases:

If (l = r), then len(l, r) = 1. // true in odd-length palindrome

If (l + 1 = r), then len(l, r) = 2 if (A[l] = A[r]), or 1 otherwise. // true in even-length palindrome

113

6.4. SUFFIX TREE AND SUFFIX ARRAY c© Steven & Felix, NUS

Recurrences:

If (A[l] = A[r]), then len(l, r) = 2 + len(l + 1, r − 1). // both corner characters are similar

else len(l, r) = max(len(l, r − 1), len(l + 1, r)). // increase left side or decrease right side

Programming Exercises related to String Processing with DP:

1. UVa 164 - String Computer (String Alignment/Edit Distance)

2. UVa 531 - Compromise (Longest Common Subsequence + printing solution)

3. UVa 10066 - The Twin Towers (Longest Common Subsequence - but not on ‘string’)

4. UVa 10100 - Longest Match (Longest Common Subsequence)

5. UVa 10192 - Vacation (Longest Common Subsequence)

6. UVa 10405 - Longest Common Subsequence (as the problem name implies)

7. UVa 10739 - String to Palindrome

8. UVa 11151 - Longest Palindrome

9. LA 2460 - Searching Sequence Database in Molecular Biology (String Alignment)

6.4 Suffix Tree and Suffix Array

Suffix Tree and Suffix Array are two efficient and related data structures for strings. We do not

put this topic in Chapter 2 as these two data structures are special for strings.

6.4.1 Suffix Tree: Basic Ideas

Figure 6.2: Suffix Trie (Left) and Suffix Tree (Right) of S = ’acacag$’ (Figure from [24])

Consider a string2 S = ’acacag$’, a Suffix3 Trie of S is a tree that contains all possible suffixes

of S (see Figure 6.2, left). Two suffixes that share common prefix will share the same first few

vertices, e.g. ’cag$’ and ’cacag$’ share the first two vertices ’ca’ before they split. The leaves

contain the indices of the suffixes. Suffix Tree of S is Suffix Trie where we merge vertices with only

one child (see Figure 6.2, right). Notice the ‘edge-label’ and ‘path-label’ in the figure.

Exercise: Draw the Suffix Tree of S = ’competitive$’!

2Notice that S is usually appended with a special char ‘$’ which is lexicographically smaller than all the alphabets
used in S.

3A suffix of a string is a ‘special case’ substring that goes up to the last character of the string.

114

6.4. SUFFIX TREE AND SUFFIX ARRAY c© Steven & Felix, NUS

6.4.2 Applications of Suffix Tree

Assuming that a Suffix Tree4 for a string S is already built, we can use it for these applications:

Exact String Matching in O(|Q|+ occ)

With Suffix Tree, we can find all (exact) occurrences of a query string Q in S in O(|Q|+occ) where

|Q| is the length of the query string Q itself and occ is the total number of occurrences of Q in S –

no matter how long the string S is. When the Suffix Tree is already built, this approach is faster

than many exact string matching algorithms (e.g. KMP).

With Suffix Tree, our task is to search for the vertex x in the Suffix Tree which represents the

query string Q. This can be done by just one root to leaf traversal that follows the edge labels.

Vertex with path-label = Q is the desired vertex x. Then, leaves in the subtree rooted at x are the

occurrences of Q in S. We can then read the starting indices of such substrings that are stored in

the leaves of the sub tree.

For example, in the Suffix Tree of S = ’acacag$’ shown in Figure 6.2, right and Q = ’aca’,

we can simply traverse from root, go along the edge label ‘a’, then the edge label ‘ca’ to find vertex

x with the path-label ‘aca’ (follow the dashed red arrow in Figure 6.2, right). The leaves of this

vertex x point to index 1 (substring: ’acacag$’) and index 3 (substring: ’acag$’).

Exercise: Now try to find a query string Q = ’ca’ and Q = ’cat’!

Finding Longest Repeated Substring in O(n)

With Suffix Tree, we can also find the longest repeated substring in S easily. The deepest internal

vertex X in the Suffix Tree of S is the answer. Vertex X can be found with an O(n) tree traversal.

The fact that X is an internal vertex implies that it represent more than one suffixes (leaves) of

string S and these suffixes shared a common prefix (repeated substring). The fact that X is the

deepest internal vertex (from root) implies that its path-label is the longest repeated substring.

For example, in the Suffix Tree of S = ’acacag$’ shown in Figure 6.2, right, the longest

repeated substring is ‘aca′ as it is the path-label of the deepest internal vertex.

Exercise: Find the longest repeated substring in S = ’cgacattacatta$’!

Finding Longest Common Substring in O(n)

The problem of finding the Longest Common Substring (not Subsequence)5 of two or more

strings can be solved in linear time with Suffix Tree. Consider two strings S1 and S2, we can

build a generalized Suffix Tree for S1 and S2 with two different ending markers, e.g. S1 with

character ‘#’ and S2 with character ‘$’. Then, we mark each internal vertices with have leaves

that represent suffixes of both S1 and S2 – this means the suffixes share a common prefix. We then

report the deepest marked vertex as the answer.

For example, with S1 = ’acgat#’ and S2 = ’cgt$’, The Longest Common Substring is ’cg’

of length 2. In Figure 6.3, we see the root and vertices with path-labels ‘cg’, ‘g’, and ‘t’ all have

two different leaf markers. The deepest marked vertex is ‘cg’. The two suffixes cgat# and cgt$

share a common prefix ‘cg’.

4As Suffix Tree is more compact than Suffix Trie, we will concentrate on Suffix Tree.
5In ‘abcdef’, ‘bce’ (skip character ‘d’) is subsequence and ‘bcd’ (contiguous) is substring and also subsequence.

115

6.4. SUFFIX TREE AND SUFFIX ARRAY c© Steven & Felix, NUS

Figure 6.3: Generalized Suffix Tree of S1 = ’acgat#’ and S2 = ’cgt$’ (Figure from [24])

Exercise: Find the Longest Common Substring of S1 = ’steven$’ and S2 = ’seven$’!

6.4.3 Suffix Array: Basic Ideas

Building efficient Suffix Tree under contest environment is a bit complex and risky. Fortunately,

another data structure that we are going to describe, called Suffix Array invented by Udi Manber

and Gene Myers, has similar functionalities as Suffix Tree but simpler to implement, especially

in programming contest setting. Thus we will skip the discussion on building a Suffix Tree and

instead focus on Suffix Array.

Basically, Suffix Array is an integer array that contains indices of sorted suffixes. For example,

consider the same S = ’acacag$’ with n = 7. The Suffix Array of S is an integer permutation of

n as shown in Figure 6.4. Note that we regard the terminating symbol $ as the lexicographically

smallest character.

Figure 6.4: Suffix Array of S = ’acacag$’ (Figure from [24])

Suffix Tree and Suffix Array are very related. As we can see in Figure 6.5, the leaves of a Suffix

Tree (from left to right) is in Suffix Array order. In short, a vertex in Suffix Tree corresponds to

a range in Suffix Array!

Figure 6.5: Suffix Tree versus Suffix Array of S = ’acacag$’ (Figure from [24])

A Suffix Array is good enough for many practical string operations in contest problems. In this

section, we present two simple ways to build a Suffix Array given a string S[0 ... n-1].

116

6.4. SUFFIX TREE AND SUFFIX ARRAY c© Steven & Felix, NUS

#include <iostream>

#include <stdlib.h>

#include <string.h>

using namespace std;

char S[1001]; // this naive Suffix Array cannot go beyond 1000 characters

int SA[1001], n; // compare suffixes

int SA_cmp(const void *a, const void *b) { return strcmp(S + *(int*)a, S + *(int*)b); }

int main() { // first approach: O(n^2 log n), only for n <= 1000

n = strlen(gets(S));

for (int i = 0; i < n; i++) SA[i] = i; // sort * comparison

qsort(SA, n, sizeof(int), SA_cmp); // O(n log n) * O(n) = O(n^2 log n)

for (int i = 0; i < n; i++) printf("%d %s\n", SA[i], S+SA[i]);

} // return 0;

When applied to string S = ’acacag$’, the simple code that simply sort all suffixes with sort

library will produce the correct Suffix Array = {6, 0, 2, 4, 1, 3, 5} (note that index starts from 0).

However, this is barely useful except for contest problems with n ≤ 1000.

A better way to build the Suffix Array is to sort suffixes O(n log n) in increasing length. We

start from suffixes with length 1, length 2, length 4, length 8, ..., up to n. As the length grows

exponentially, we only need O(log n) steps. Thus the overall complexity is O(n log2 n). With this

complexity, working with strings of length n ≤ 100K – the typical programming contest range – is

not a problem. The library code is shown below. For explanation, see [29, 24].

#include <algorithm>

#include <iostream>

#include <stdlib.h>

#include <string.h>

using namespace std;

#define MAXN 200010

int RA[MAXN], SA[MAXN], LCP[MAXN], *FC, *SC, step;

char S[MAXN], Q[MAXN];

bool cmp(int a, int b) {

if (step==-1 || FC[a]!=FC[b]) return FC[a] < FC[b];

return FC[a+(1<<step)] < FC[b+(1<<step)];

}

void suffix_array(char *S, int n) { // O(n log^2(n))

for (int i=0; i<n; i++) RA[i] = S[SA[i] = i];

for (FC=RA, SC=LCP, step=-1; (1<<step)<n; step++) {

sort(SA, SA+n, cmp);

int cnt = 0;

for (int i=0; i<n; i++) {

if (i>0 && cmp(SA[i-1],SA[i])) cnt++;

SC[SA[i]] = cnt;

}

if (cnt==n-1) break; // all distinct, no need to continue

swap(FC,SC);

}

for (int i=0; i<n; i++) RA[SA[i]] = i;

}

117

6.4. SUFFIX TREE AND SUFFIX ARRAY c© Steven & Felix, NUS

Now with a Suffix Array already built, we can search for a query string Q of length m in string S of

length n in O(m log n). This is O(log n) times slower than the Suffix Tree version but in practice is

quite acceptable. The O(m log n) complexity comes from the fact that we can do O(log n) binary

search on a sorted suffixes and do up to O(m) comparisons per suffix.

The fact that the occurrences of Q in the Suffix Array of S are consecutive can be used to

deal with the longest repeated substring and the longest common substring problems in similar

O(m log n) + O(occ). For example in S = ’acacag$’, the repeated substring ’ca’ occurs in

SA[4] and SA[5]. For the common substring between S1 = ’acgat#’ and S2 = ’cgt$’, we can

concatenate the two string into S = ’acgat#cgt$’, build the Suffix Array of the concatenated

string, and then modify the comparison function to check for the marker character ‘#’ and ‘$’.

Our code for finding the query string Q in a Suffix Array is shown below:

pair<int, int> range(int n, char *Q) {

int lo = 1, hi = n, m = strlen(Q), mid = lo; // index 0 - null

while (lo <= hi) { // valid range = [1..n]

mid = (lo + hi) / 2;

int cmp = strncmp(S + SA[mid], Q, m);

if (cmp == 0) break; // found

else if (cmp > 0) hi = mid - 1;

else lo = mid + 1;

}

if (lo > hi)

return make_pair(-1, -1); // not found

for (lo = mid; lo >= 1 && strncmp(S + SA[lo], Q, m) == 0; lo--);

lo++;

for (hi = mid; hi <= n && strncmp(S + SA[hi], Q, m) == 0; hi++);

hi--;

return make_pair(lo, hi);

}

int main() {

int n = strlen(gets(S));

suffix_array(S, n + 1); // NULL is included!

for (int i = 1; i <= n; i++) // SA[0] is the NULL

printf("%d %s\n", SA[i], S + SA[i]);

gets(Q);

pair<int, int> pos = range(n, Q);

if (pos.first != -1 && pos.second != -1) {

printf("%s is found SA [%d .. %d] of %s\n", Q, pos.first, pos.second, S);

printf("They are:\n");

for (int i = pos.first; i <= pos.second; i++)

printf(" %s\n", S + SA[i]);

}

else

printf("%s is not found in %s\n", Q, S);

return 0;

}

118

6.5. CHAPTER NOTES c© Steven & Felix, NUS

Programming Exercises related to Suffix Array:

1. UVa 719 - Glass Beads (minimum lexicographic rotation, solvable with SA)

2. UVa 10526 - Intellectual Property

3. UVa 11107 - Life Forms

4. UVa 11512 - GATTACA

5. LA 4657 - Top 10 (ACM ICPC Jakarta 2009, problem setter: Felix Halim)

6. https://www.spoj.pl/problems/SARRAY/ (problem setter: Felix Halim)

6.5 Chapter Notes

The materials regarding String Alignment (Edit), Longest Common Subsequence, Suffix Tree, and

Suffix Array are courtesy of A/P Sung Wing Kin, Ken [24] from School of Computing, National

University of Singapore.

The string alignment problem discussed in Section 6.3 is called the global alignment problem.

The best solution so far is O(nm/ log2 n) [24] but it is complicated to code. However if the given

contest problem is limited to d insertions or deletions only, we can speed up Needleman-Wunsch’s

algorithm to O(dn) by just concentrating on the main diagonal of DP matrix.

For the specialized case of local alignment problem, a better algorithm similar to Needleman-

Wunsch’s algorithm exists (Smith-Waterman’s algorithm [24]).

The Longest Common Subsequence problem can be solved in O(n log n) when all characters are

distinct [24].

There are other string matching algorithms that are not discussed in this chapter: Rabin-

Karp’s, Boyer-Moore’s, Knuth-Morris-Pratt’s (KMP), Aho-Corasick’s, etc. But for

many contest problems involving string, using library functions like C strstr in <string.h>

or string.find() in C++ STL <string> is usually already sufficient. If a faster string matching

algorithm is needed during contest time, we suggest using Suffix Array that has been discussed in

this chapter.

For more example applications of Suffix Array, please read the article “Suffix arrays - a pro-

gramming contest approach” by [29].

There are several other string processing problems that we have not touched yet: Gram-

mar and Parsing (e.g. Backus Naur Form), Encoding/Decoding/Cypher/Cryptography,

Shortest Common Superstring, Regular Expression (using Java), Hashing techniques for

String Processing, Suffix Automaton, etc.

There are approximately 54 programming exercises discussed in this chapter.

119

Chapter 7

(Computational) Geometry

Let no man ignorant of geometry enter here.

— Plato’s Academy in Athens

(Computational) Geometry is yet another topic that frequently appears in programming contests. Many

contestants afraid to tackle them due to floating point precision errors1 or the many tricky ‘special cases’

commonly found in geometry problems. Some others skip these problems as they forgot some important for-

mulas and unable to derive the required formulas from basic concepts. Study this chapter for some ideas on

tackling (computational) geometry problems in ICPC.

7.1 Overview and Motivation

Almost all ICPC problem sets have at least one geometry problem. If you are lucky, it ask you for

some geometry solution that you have learned in pre-University which you still remember or the

solution can be derived by drawing the geometrical objects. However, many geometry problems

are more complex and finding the correct algorithm is harder. Table 7.1 shows some geometry

problems in recent ACM ICPC Asia Regional.

LA Problem Name Source Geometry Problem (Algorithm)

2797 Monster Trap Aizu03

3169 Boundary Points Manila06 Convex Hull

3616 How I Wonder ... Yokohama06

4107 TUSK Singapore07

4410 Shooting the Monster KLumpur08
4413 Triangle Hazard KLumpur08

4532 Magic Rope Hsinchu09

4639 Separate Points Tokyo09
4642 Malfatti Circles Tokyo09 Triangles & Circles

4717 In-circles Again Phuket09 Circles in Triangle

Table 7.1: Some (Computational) Geometry Problems in Recent ACM ICPC Asia Regional

1To avoid this error, usually we do floating-point comparison test in this way: fabs(a − b) < EPS where EPS
usually is a small number like 1e-9.

120

7.2. GEOMETRY BASICS c© Steven & Felix, NUS

We divide this chapter into two parts. The first part is geometry basics in Section 7.2. We

review many (not all) English geometric terminologies and formulas that are commonly used in

programming contests. The second part deals with computational geometry in Section 7.4 -

7.5, where we use data structures and algorithms which can be stated in terms of geometry.

7.2 Geometry Basics

As ACM ICPC contestants come from various nationalities, languages, and backgrounds, sometimes

these English geometric terminologies below may look alien. Here, we try to provide a list –

which cannot be exhaustive – to be used as a quick reference when contestants are given geometry

problems.

• Lines

1. A Line can be described with mathematical equation: y = mx+ c or ax+ bx+ c = 0.

The y = mx+ c equation involves ‘gradient’ / ‘slope’ m.

Note: Be careful with vertical lines with ‘infinite’ slope. Usually, we treat the vertical

lines separately in the solution code (example of the special cases in geometry problems).

2. A Line Segment is a line with two end points with finite length.

Programming Exercises related to Lines:

1. UVa 184 - Laser Lines

2. UVa 270 - Lining Up

3. UVa 833 - Water Falls

4. UVa 10180 - Rope Crisis In Ropeland (closest point on line segment)

5. UVa 10242 - Fourth Point

6. UVa 10263 - Railway

7. UVa 11068 - An Easy Task (line ax + by + c)

8. UVa 11277 - The Silver Bullet (Complete Search + collinear test discussed below)

9. LA 4601 - Euclid (Southeast USA Regional 2009)

• Circles (see Figure 7.1)

1. In a 2-D Cartesian coordinate system, the Circle centered at (a, b) with radius r is the

set of all points (x, y) such that (x− a)2 + (y − b)2 = r2.

2. The constant π is theRatio of any circle’s circumference to its diameter in the Euclidean

space. To avoid precision error, the safest value for programming contest is pi = 2 ×
acos(0.0), unless if this constant is defined in the problem description!

3. The Circumference c of a circle with a Diameter d is c = π × d where d = 2× r.

4. The length of an Arc of a circle with a circumference c and an angle α (in degrees2) is
α

360.0 × c

2Human usually works with degrees, but many mathematical functions in programming languages works with
radians. Check your programming language manual to verify this. To help with conversion, just remember that one
π radian equals to 180 degrees.

121

7.2. GEOMETRY BASICS c© Steven & Felix, NUS

5. The length of a Chord of a circle with a radius r and an angle α (in degrees) can be

obtained with the Law of Cosines: 2r2× (1− cos(α)) – see the explanation of this law

in the discussion about Triangles below.

6. The Area A of a circle with a radius r is A = π × r2

7. The area of a Sector of a circle with an area A and an angle α (in degrees) is α
360.0 ×A

8. The area of a Segment of a circle can be found by subtracting the area of the corre-

sponding Sector with the area of an Isosceles Triangle with sides: r, r, and Chord-length.

Figure 7.1: Circles

Programming Exercises related to Circles (only):

1. UVa 10005 - Packing polygons (Complete Search: Circle through 2 points, test others)

2. UVa 10012 - How Big Is It (Circle radius, use complete search)

3. UVa 10136 - Chocolate Chip Cookies (Circle through 2 points)

4. UVa 10221 - Satellites (finding arc and chord length of a circle)

5. UVa 10432 - Polygon Inside A Circle (area of n-sided regular polygon inside circle)

6. UVa 10451 - Ancient Village Sports (inner/outer circle of an n-sided regular polygon)

7. UVa 10589 - Area (check if point is inside intersection of 4 circles)

• Triangles (see Figure 7.2)

Figure 7.2: Triangles

1. A Triangle is a polygon (defined below) with three vertices and three edges. There are

several types of triangles:

Equilateral Triangle, all three edges have the same length and all inside/interior angles

are 60 degrees;

122

7.2. GEOMETRY BASICS c© Steven & Felix, NUS

Isosceles Triangle, two edges have the same length;

Scalene Triangle, no edges have the same length;

Right Triangle, one of its interior angle is 90 degrees (or a right angle).

2. The Area A of triangle with base b and height h is A = 0.5 × b× h

3. The Perimeter p of a triangle with three sides: a, b, and c is p = a+ b+ c.

4. The Heron’s Formula: The area A of a triangle with 3 sides: a, b, c, is A = sqrt(s×
(s− a)× (s− b)× (s − c)), where s = 0.5× p (the Semi-Perimeter of the triangle).

5. The radius r of the Triangle’s Inner Circle with area A and the semi-perimeter s is

r = A/s.

6. The radius R of the Triangle’s Outer Circle with 3 sides: a, b, c and area A is R =

a× b× c/(4×A).

7. In Trigonometry, the Law of Cosines (a.k.a. the Cosine Formula or the Cosine

Rule) is a statement about a general triangle that relates the lengths of its sides to the

cosine of one of its angles. See the scalene (middle) triangle in Figure 7.2. With the

notation described there, we have: c2 = a2 + b2 − 2× a× b× cos(γ). This formula can

be rewritten for the other two angles α and β.

8. In Trigonometry, the Law of Sines (a.k.a. the Sine Formula or the Sine Rule) is an

equation relating the lengths of the sides of an arbitrary triangle to the sines of its angle.

See the scalene (middle) triangle in Figure 7.2. With the notation described there, we

have: a
sin(α) =

b
sin(β) =

c
sin(γ) .

9. In Trigonometry, the Pythagorean Theorem specializes the Law of Cosines. The

Pythagorean theorem is only correct for right triangles. If the angle γ is a right angle

(of measure 90◦ or π/2 radians), then cos(γ) = 0, and thus the law of cosines reduces

to: c2 = a2 + b2.

10. In Trigonometry, the Pythagorean Triple is a triple with three positive integers a,

b, and c, such that a2 + b2 = c2. Such a triple is commonly written as (a, b, c). A

well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc)

for any positive integer k. A Primitive Pythagorean Triple is one in which a, b, and

c are coprime. Primitive Pythagorean Triples describe the three integer side lengths of

a Right Triangle, although the converse may not be true.

Programming Exercises related to Triangles (and possibly Circles again):

1. UVa 143 - Orchard Trees (counting integer points in triangle)

2. UVa 190 - Circle Through Three Points (triangle’s outer circle)

3. UVa 438 - The Circumference of the Circle (triangle’s outer circle)

4. UVa 10195 - The Knights Of The Round Table (triangle’s inner circle, Heron’s formula)

5. UVa 10286 - The Trouble with a Pentagon (Law of Sines)

6. UVa 10347 - Medians (given 3 medians of a triangle, find its area)

7. UVa 10991 - Region (Heron’s formula, Law of Cosines, area of sector)

8. UVa 11152 - Colourful Flowers (triangle’s inner and outer circle, Heron’s formula)

9. UVa 11437 - Triangle Fun

123

7.2. GEOMETRY BASICS c© Steven & Felix, NUS

10. UVa 11479 - Is this the easiest problem? (property check)

11. UVa 11524 - In-Circle (yet another variant of circles in triangles)

12. UVa 11579 - Triangle Trouble

13. LA 4413 - Triangle Hazard

14. LA 4717 - In-circles Again

• Rectangles

1. A Rectangle is a polygon with four edges, four vertices, and four right angles.

2. The Area A of a rectangle with width w and height h is A = w × h.

3. The Perimeter p of a rectangle with width w and height h is p = 2× (w + h).

4. A Square is a special case of rectangle where w = h.

Programming Exercises related to Rectangles:

1. UVa 201 - Square

2. UVa 476 - Point in Figures: Rectangles

3. UVa 922 - Rectangles by the Ocean

4. UVa 10502 - Counting Rectangles (Complete Search)

5. UVa 10908 - Largest Square (implicit square)

6. UVa 11207 - The Easiest Way (cutting rectangle into 4-equal-sized squares)

7. UVa 11455 - Behold My Quadrangle (property check)

• Trapeziums

1. A Trapezium is a polygon with four edges, four vertices, and one pair of parallel edges.

If the two non-parallel sides of the trapezium have the same length, we have an Isosceles

Trapezium.

2. The Area A of a trapezium with base w1, another edge parallel with the base w2 and

height h is A = 0.5× (w1 + w2)× h.

• Quadrilaterals

1. A Quadrilateral or Quadrangle is a polygon with with four edges (and four vertices).

Rectangles, Squares, and Trapeziums that are mentioned above are Quadrilaterals. Fig-

ure 7.3 shows a few more examples: Parallelogram, Kite, Rhombus.

Figure 7.3: Quadrilaterals

124

7.2. GEOMETRY BASICS c© Steven & Felix, NUS

• Spheres

1. A Sphere is a perfectly round geometrical object in 3-D space.

2. The Great-Circle Distance between any two points A and B on sphere [38] is the

shortest distance along a path on the surface of the sphere. This path is equal to the

length of the Arc of the Great-Circle of that sphere that pass through the two points

A and B.

The Great-Circle of a sphere is defined as the circle that runs along the surface of the

sphere so that it cuts the sphere into two equal hemispheres. To find the solution to the

Great-Circle Distance, we find the central angle AOB (see Figure 7.4) of the Great-Circle

and use it to determine the length of the arc.

Although quite rare, some contest problems use this distance metric. Usually, the two

points on the surface of a sphere are given as (latitude, longitude) pair. The following

library code will help us obtain the shortest great-circle distance given two points on the

sphere and the radius of the sphere. For the derivation of this library code, see [38].

Figure 7.4: Great-Circle and Great-Circle Distance (Arc A-B) (Figures from [46])

double greatCircleDistance(double pLat, double pLong,

double qLat, double qLong, double radius) {

pLat *= PI / 180; pLong *= PI / 180;

qLat *= PI / 180; qLong *= PI / 180;

return radius * acos(cos(pLat)*cos(pLong)*cos(qLat)*cos(qLong) +

cos(pLat)*sin(pLong)*cos(qLat)*sin(qLong) +

sin(pLat)*sin(qLat));

}

Programming Exercises related to the Great-Circle Distance:

1. UVa 535 - Globetrotter

2. UVa 10075 - Airlines (with APSP)

3. UVa 10316 - Airline Hub

4. UVa 10897 - Travelling Distance

5. UVa 11817 - Tunnelling The Earth

125

7.2. GEOMETRY BASICS c© Steven & Felix, NUS

• Polygons

1. A Polygon is a plane figure that is bounded by a closed path or circuit composed of

a finite sequence of straight line segments. These segments are called edges or sides.

The point where two edges meet are the polygon’s vertex or corner. The interior of the

polygon is sometimes called its body.

2. A polygon is said to be Convex if any line segment drawn inside the polygon does not

intersect any edge of the polygon. Otherwise, the polygon is called Concave.

3. The area A of an n-sided polygon (either convex or concave) with n pairs of vertex

coordinates given in some order (clockwise or counter-clockwise) is:

| x1 y1 |

| x2 y2 |

1 | x3 y3 |

A = - * | . . | = 1/2 * (x1y2 + x2y3 + y3y4 + ... + xny1

2 | . . | -x2y1 - x3y2 - x3y4 - ... - x1yn)

| . . |

| xn yn |

This can be written into the library code below. Notice that our default setting is all-

integer coordinates and use all-integer operations whenever possible. You need to change

a part of this code if the given points are not integers:

struct point { int x, y; } // a point has two members

int determinant(vector<point> P) { // default: integer computation

int result = 0, x1, y1, x2, y2;

for (int i = 0; i < P.size(); i++) {

x1 = P[i].x; x2 = P[(i + 1) % P.size()].x;

y1 = P[i].y; y2 = P[(i + 1) % P.size()].y;

result += (x1 * y2 - x2 * y1);

}

return result;

}

// area is half of the determinant and the result may be a non-integer

double area(vector<point> P) { return fabs(determinant(P)) / 2.0); }

4. The perimeter p of an n-sided polygon with n pairs of coordinates given in some order

(clockwise or counter-clockwise) can be computed with Pythagorean theorem:

double perimeter(vector<point> P) { // point has x & y

double result = 0.0, x1, y1, x2, y2, dx, dy;

for (int i = 0; i < P.size(); i++) {

x1 = P[i].x; x2 = P[(i + 1) % P.size()].x;

y1 = P[i].y; y2 = P[(i + 1) % P.size()].y;

dx = x2 - x1;

dy = y2 - y1;

result += sqrt(dx * dx + dy * dy);

}

return result;

}

126

7.2. GEOMETRY BASICS c© Steven & Felix, NUS

5. Testing if a polygon is convex (or concave) is easy with a quite robust3 geometric pred-

icate test called CCW (Counter Clockwise) Test (a.k.a. Left-Turn Test).

CCW test is a simple yet important predicate test in computational geometry. This test

takes in 3 points p, q, r in a plane and determine if the sequence p → q → r is a left

turn4. For example, CCW (p, q, r) where p = (0, 0), q = (1, 0), r = (0, 1) is true. This

test can be implemented with the following library code:

int turn(point p, point q, point r) {

int result = (r.x - q.x) * (p.y - q.y) - (r.y - q.y) * (p.x - q.x);

if (result < 0) return -1; // P->Q->R is a right turn

if (result > 0) return 1; // P->Q->R is a left turn

return 0; // P->Q->R is a straight line, i.e. P, Q, R are collinear

}

// Note: sometimes, we change the ’> 0’ to ’>= 0’ to accept collinear points

bool ccw(point p, point q, point r) { return (turn(p, q, r) > 0); }

With the library code above, we can now check if a polygon is convex by verifying if all

three consecutive points in the polygon make left-turns if visited in counter clockwise

order. If we can find at least one triple where this is false, the polygon is concave.

Programming Exercises related to Polygons:

1. UVa 478 - Point in Figures: Rectangles, Circles, and Triangles (point inside polygon)

2. UVa 634 - Polygon (point inside polygon)

3. UVa 10078 - Art Gallery (testing if a polygon is convex)

4. UVa 10112 - Myacm Triangles (check if point in triangle with area tests like UVa 478)

5. UVa 11447 - Reservoir Logs (area of polygon)

6. UVa 11473 - Campus Roads (perimeter of polygon)

• There are of course exists many other geometric shapes, objects, and formulas that have not

been covered yet, like 3-D objects, etc. What we have covered so far are the ones which

appear more frequently in programming contests.

Other Programming Exercises related to Basic Geometry that are not listed above:

1. UVa 10088 - Trees on My Island (Georg A. Pick’s Theorem: A = i+ b
2 − 1, see [43])

2. UVa 10297 - Beavergnaw (cones, cylinders, volumes)

3. UVa 10387 - Billiard (expanding surface, trigonometry)

4. UVa 11232 - Cylinder (circles, rectangles, cylinders)

5. UVa 11507 - Bender B. Rodriguez Problem (simulation)

3Geometric programs are preferred to be robust, namely, no numerical errors. To help achieving that quality,
computations are often done by predicate tests (e.g. the CCW test) rather than by floating point calculations
which is prone to precision errors. Moreover, arithmetic operations used are limited to additions, subtractions and
multiplications on integers only (exact arithmetics).

4Or in other words: p → q → r is counter-clockwise, r is on the left of line pq, triangle pqr has a positive area and
its determinant is greater than zero.

127

7.3. GRAHAM’S SCAN c© Steven & Felix, NUS

7.3 Graham’s Scan

The Convex Hull of a set of points P is the smallest convex polygon CH(P) for which each

point in P is either on the boundary of CH(P) or in its interior (see Figure 7.5.D). Every vertex

in CH(P) is a vertex in original P . Thus, the algorithm of finding convex hull must decide which

vertices in P to be chosen as part of the convex hull.

Figure 7.5: Convex Hull CH(P) of Set of Points P

There are several convex hull algorithms available. In this section, we choose the O(n log n) Ronald

Graham’s Scan algorithm. This algorithm first sorts all n points of P (Figure 7.5.A) based on its

angle w.r.t a point called pivot. In our example, we pick bottommost and rightmost point in P as

pivot (see point 0 and the counter-clockwise order of the remaining points in Figure 7.5.B).

Then, this algorithm maintains a stack S of candidate points. Each point of P is pushed once

on to S and points that are not going to be part of CH(P) will be eventually popped from S.

Examine Figure 7.5.C. The stack previously contains (bottom) 11-0-1-2 (top), but when we try to

insert 3, 1-2-3 is a right turn, so we pop 2. Now 0-1-3 is a left turn, so we insert 3 to the stack,

which now contains (bottom) 11-0-1-3 (top).

When Graham’s Scan terminates, whatever left in S are the points of CH(P) (see Figure 7.5.D,

the stack contains (bottom) 11-0-1-4-7-10-11 (top)). Graham Scan’s eliminates all the right turns!

Check that the sequence of vertices in S always makes left turns – a convex polygon.

The implementation of Graham’s Scan, omitting parts that have shown earlier like ccw function,

is shown below.

point pivot; // global variable

vector<point> polygon, CH;

int area2(point a, point b, point c) {

return a.x * b.y - a.y * b.x + b.x * c.y - b.y * c.x + c.x * a.y - c.y * a.x;

}

int dist2(point a, point b) { // function to compute distance between 2 points

int dx = a.x - b.x, dy = a.y - b.y; return dx * dx + dy * dy;

}

bool angle_cmp(point a, point b) { // important angle-sorting function

if (area2(pivot, a, b) == 0) // collinear

return dist2(pivot, a) < dist2(pivot, b); // which one closer

int d1x = a.x - pivot.x, d1y = a.y - pivot.y;

int d2x = b.x - pivot.x, d2y = b.y - pivot.y;

return (atan2((double)d1y, (double)d1x) - atan2((double)d2y, (double)d2x)) < 0;

}

128

7.3. GRAHAM’S SCAN c© Steven & Felix, NUS

vector<point> GrahamScan(vector<point> Polygon) {

// first, find P0 = point with lowest Y and if tie: rightmost X

int i, P0 = 0, N = Polygon.size();

for (i = 1; i < N; i++)

if (Polygon[i].y < Polygon[P0].y ||

(Polygon[i].y == Polygon[P0].y && Polygon[i].x > Polygon[P0].x))

P0 = i;

point temp = Polygon[0]; // swap selected vertex with Polygon[0]

Polygon[0] = Polygon[P0];

Polygon[P0] = temp;

// second, sort points by angle w.r.t. P0, skipping Polygon [0]

pivot = Polygon[0]; // use this global variable as reference

sort(++Polygon.begin(), Polygon.end(), angle_cmp);

// third, the ccw tests

stack<point> S;

point prev, now;

S.push(Polygon[N - 1]); // put two starting vertices into stack S

S.push(Polygon[0]);

i = 1; // and start checking the rest

while (i < N) { // note: N must be >= 3 for this method to work

now = S.top();

S.pop(); prev = S.top(); S.push(now); // trick to get the 2nd item from top of S

if (ccw(prev, now, Polygon[i])) { // if these 3 points make a left turn

S.push(Polygon[i]); // accept

i++;

}

else // otherwise

S.pop(); // pop this point until we have a left turn

}

vector<point> ConvexHull;

while (!S.empty()) { // from stack back to vector

ConvexHull.push_back(S.top());

S.pop();

}

ConvexHull.pop_back(); // the last one is a duplicate of first one

return ConvexHull; // return the result

}

Programming Exercises related to Convex Hull:

1. UVa 109 - Scud Busters

2. UVa 218 - Moth Eradication

3. UVa 361 - Cops and Robbers

4. UVa 681 - Convex Hull Finding (pure convex hull problem for starting point)

5. UVa 811 - The Fortified Forest (Complete Search with convex hull)

129

7.4. INTERSECTION PROBLEMS c© Steven & Felix, NUS

6. UVa 10002 - Center of Masses (centroid of convex polygon, convex hull)

7. UVa 10065 - Useless Tile Packers (plus area of polygon)

8. UVa 10135 - Herding Frosh

9. UVa 10173 - Smallest Bounding Rectangle

10. UVa 11626 - Convex Hull

7.4 Intersection Problems

In geometry problems, we can virtually take any pair of objects and see if they intersect, and if

they are: what is the point/area/volume of intersection? This is the source of many computational

geometry problems in contests.

Line segment intersection is one the most frequent intersection problems. We can test whether

two line segments intersect or not by using several ccw tests (code is shown below).

struct line { point p1, p2; }

int intersect(line line1, line line2) {

return

((ccw(line1.p1, line1.p2, line2.p1) * ccw(line1.p1, line1.p2, line2.p2)) <= 0)

&&

((ccw(line2.p1, line2.p2, line1.p1) * ccw(line2.p1, line2.p2, line1.p2)) <= 0);

}

However, intersections can occur between different types of objects other than two line segments.

The other objects are: Cube, Box, Circle, Polygon, Triangle, Rectangle, etc. Some examples are

shown below.

Programming Exercises solvable related to intersection problem:

• Line Segment Intersection

1. UVa 191 - Intersection

2. UVa 378 - Intersecting Lines

3. UVa 866 - Intersecting line segments

4. UVa 920 - Sunny Mountain

5. UVa 972 - Horizon Line

6. UVa 10902 - Pick-up sticks

7. UVa 11343 - Isolated Segments

• Other Objects

1. UVa 453 - Intersecting Circles (circle and circle)

2. UVa 460 - Overlapping Rectangles (rectangle and rectangle)

3. UVa 737- Gleaming the Cubes (cube and cube)

4. UVa 904 - Overlapping Air Traffic Control (3D-box and 3D-box)

5. UVa 10301 - Rings and Glue (circle and circle)

6. UVa 10321 - Polygon Intersection (convex polygon and convex polygon)

130

7.5. DIVIDE AND CONQUER REVISITED c© Steven & Felix, NUS

7. UVa 11122 - Tri Tri (triangle and triangle)

8. UVa 11345 - Rectangles (rectangle and rectangle)

9. UVa 11515 - Cranes (circle and circle, plus DP)

10. UVa 11601 - Avoiding Overlaps (rectangle and rectangle)

11. UVa 11639 - Guard the Land (rectangle and rectangle)

7.5 Divide and Conquer Revisited

Several computational geometry problems turn out to be solvable with Divide and Conquer paradigm

that has been elaborated earlier in Section 3.2. One of the example is shown below.

Bisection Method for Geometry Problem

Figure 7.6: Athletics Track (from UVa 11646)

Suppose that we have a problem as follows: Given a desired soccer field with desired length : width

ratio = A : B, two arcs from the same circle whose center is located in the middle of the field,

and the length of the athletics track (the perimeter: 2× length + 2× arc) to be 400m, what is the

actual length and width of the field? See Figure 7.6.

It is quite hard to find the solution with pen and paper, but with the help of computer and

bisection method (binary search), we can find the solution easily.

Suppose we binary search the value of L, then we can get W from b×L/a. The expected length

of an arc is (400−2×L)/2. Now we can use Trigonometry to compute the radius r and the angle o

via triangle CMX (see Figure 7.6). With r and o, we can compute the actual arc length. We then

compare this value with the expected arc length to decide whether we have to enlarge or reduce

the length L. The important portion of the code is shown below.

lo = 0.0; hi = 400.0; // the range of answer

while (fabs(lo - hi) > 1e-9) { // do bisection method on L

L = (lo + hi) / 2.0;

W = b * L / a; // W can be derived by W

expected_arc = (400 - 2.0 * L) / 2.0;

half_L = 0.5 * L; half_W = 0.5 * W;

r = sqrt(half_L * half_L + half_W * half_W);

angle = 2.0 * atan(half_W / half_L) * 180.0 / PI;

this_arc = angle / 360.0 * PI * (2.0 * r);

if (this_arc > expected_arc) hi = L;

else lo = L;

}

printf("Case %d: %.12lf %.12lf\n", caseNo++, L, W);

131

7.6. CHAPTER NOTES c© Steven & Felix, NUS

Programming Exercises related to this section:

1. UVa 10245 - The Closest Pair Problem (as the problem name implies)

2. UVa 10566 - Crossed Ladders (Bisection Method)

3. UVa 11378 - Bey Battle (also a Closest Pair Problem)

4. UVa 11646 - Athletics Track (Bisection Method, the circle is at the center of track)

5. UVa 11648 - Divide The Land (Bisection Method)

7.6 Chapter Notes

Some materials from this chapter are derived from the materials courtesy of Dr Cheng Holun,

Alan from School of Computing, National University of Singapore.

There are many other Convex Hull algorithms such as Jarvis’s March, Gift Wrapping, and

Upper/Lower Hull with more or less similar time complexity as Graham’s Scan. The Graham’s

Scan algorithm presented in this chapter is usually enough for most contest problems.

There is a computational geometry technique that has not been discussed yet: plane sweep.

Interested reader should consult the following books [19, 6, 4].

If you are preparing for ICPC, it is a good idea to dedicate one person in your team to study this

topic in depth. This person should master basic geometry formulas and advanced computational

geometry techniques. He must train himself to be familiar with many degenerate (special) cases in

certain geometry problems, able to deal with precision errors, etc.

There are approximately 96 programming exercises discussed in this chapter.

132

Appendix A

Problem Credits

The problems discussed in this book are mainly taken from UVa online judge [17] and ACM ICPC

Live Archive [11]. We have tried our best to contact the original authors and get their permissions.

So far, we have contacted the following problem setters and obtained their permissions: Sohel

Hafiz, Shahriar Manzoor, Manzurur Rahman Khan, Rujia Liu, Gordon Cormack, Jim Knisely,

Melvin Zhang, and Colin Tan.

If any of the author of a particular problem discussed in this book that we have not contacted

yet does not allow his/her problem to be used in this book, we will replace that particular problem

with another similar problem from different problem setter.

133

Appendix B

We Want Your Feedbacks

You, the reader, can help us to improve the quality of the future versions of this book. If you spot

any technical, grammatical, spelling errors, etc in this book or if you want to contribute certain

parts for the future version of this book (i.e. I have a better example/algorithm to illustrate a

certain point), etc, please send email the main author directly: stevenhalim@gmail.com.

134

Bibliography

[1] Ahmed Shamsul Arefin. Art of Programming Contest (from Steven’s Website). Gyankosh

Prokashoni (Available Online), 2006.

[2] Jon Bentley. Programming Pearls. Addison Wesley, 2nd edition, 2000.

[3] Frank Carrano. Data Abstraction & Problem Solving with C++. Pearson, 5th edition, 2007.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein. Introduction to

Algorithm. MIT Press, 2nd edition, 2001.

[5] Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. Algorithms. McGraw Hill,

2008.

[6] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. Com-

putational Geometry: Algorithms and Applications. Springer, 2nd edition, 2000.

[7] Project Euler. Project Euler.

http://projecteuler.net/.

[8] Michal Forǐsek. IOI Syllabus.

http://people.ksp.sk/ misof/ioi-syllabus/ioi-syllabus-2009.pdf.

[9] Steven Halim and Felix Halim. Competitive Programming in National University of Singapore.

Ediciones Sello Editorial S.L. (Presented at Collaborative Learning Initiative Symposium CLIS

@ ACM ICPC World Final 2010, Harbin, China, 2010.

[10] Steven Halim, Roland Hock Chuan Yap, and Felix Halim. Engineering Stochastic Local Search

for the Low Autocorrelation Binary Sequence Problem. In Principles and Practice of Con-

straint Programming, pages 640–645, 2008.

[11] Competitive Learning Institute. ACM ICPC Live Archive.

http://acm.uva.es/archive/nuevoportal.

[12] IOI. International Olympiad in Informatics.

http://ioinformatics.org.

[13] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley, 2006.

[14] Anany Levitin. Introduction to The Design & Analysis of Algorithms. Addison Wesley, 1st

edition, 2002.

[15] Rujia Liu. Algorithm Contests for Beginners (In Chinese). Tsinghua University Press, 2009.

135

BIBLIOGRAPHY c© Steven & Felix, NUS

[16] Rujia Liu and Liang Huang. The Art of Algorithms and Programming Contests (In Chinese).

Tsinghua University Press, 2003.

[17] University of Valladolid. Online Judge.

http://uva.onlinejudge.org.

[18] USA Computing Olympiad. USACO Training Program Gateway.

http://train.usaco.org/usacogate.

[19] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 2nd edition,

1998.

[20] Kenneth H. Rosen. Elementary Number Theory and its applications. AddisonWesley Longman,

4th edition, 2000.

[21] Robert Sedgewick. Algorithms in C++, Part 1-5. Addison Wesley, 3rd edition, 2002.

[22] Steven S Skiena. The Algorithm Design Manual. Springer, 2008.

[23] Steven S. Skiena and Miguel A. Revilla. Programming Challenges. Springer, 2003.

[24] Wing-Kin Sung. Algorithms in Bioinformatics: A Practical Introduction. CRC Press (Taylor

& Francis Group), 1st edition, 2010.

[25] TopCoder. Algorithm Tutorials.

http://www.topcoder.com/tc?d1=tutorials&d2=alg index&module=Static.

[26] TopCoder. Single Round Match (SRM).

http://www.topcoder.com/tc.

[27] Baylor University. ACM International Collegiate Programming Contest.

http://icpc.baylor.edu/icpc.

[28] Tom Verhoeff. 20 Years of IOI Competition Tasks. Olympiads in Informatics, 3:149166, 2009.

[29] Adrian Vladu and Cosmin Negruşeri. Suffix arrays - a programming contest approach. 2008.

[30] Wikipedia. Catalan number.

http://en.wikipedia.org/wiki/Catalan number.

[31] Wikipedia. Combinatorics.

http://en.wikipedia.org/wiki/Combinatorics.

[32] Wikipedia. Cycle-Finding (Detection).

http://en.wikipedia.org/wiki/Cycle detection.

[33] Wikipedia. Disjoint-set data structure.

http://en.wikipedia.org/wiki/Disjoint-set data structure.

[34] Wikipedia. Edmond’s matching algorithm.

http://en.wikipedia.org/wiki/Edmonds’s matching algorithm.

136

BIBLIOGRAPHY c© Steven & Felix, NUS

[35] Wikipedia. Eight queens puzzle.

http://en.wikipedia.org/wiki/Eight queens puzzle.

[36] Wikipedia. Euler’s totient function.

http://en.wikipedia.org/wiki/Euler’s totient function.

[37] Wikipedia. Gaussian Elimination for Solving System of Linear Equations.

http://en.wikipedia.org/wiki/Gaussian elimination.

[38] Wikipedia. Great-Circle Distance.

http://en.wikipedia.org/wiki/Great circle distance.

[39] Wikipedia. Longest Path Problem.

http://en.wikipedia.org/wiki/Longest path problem.

[40] Wikipedia. Lowest Common Ancestor.

http://en.wikipedia.org/wiki/Lowest common ancestor.

[41] Wikipedia. Miller-Rabin Primality Test.

http://en.wikipedia.org/wiki/Miller-Rabin primality test.

[42] Wikipedia. Path Cover.

http://en.wikipedia.org/wiki/Path cover.

[43] Wikipedia. Pick’s Theorem.

http://en.wikipedia.org/wiki/Pick’s theorem.

[44] Wikipedia. Sieve of Eratosthenes.

[45] Wikipedia. Tarjan’s Strongly Connected Components Algorithm.

http://en.wikipedia.org/wiki/Tarjan’s strongly connected components algorithm.

[46] Wikipedia. The Free Encyclopedia.

http://en.wikipedia.org.

[47] Yonghui Wu and Jiang De Wang. Practical Algorithm Analysis and Program Design (In

Chinese). Posts and Telecom Press, 2009.

137

Index

ACM, 1

All-Pairs Shortest Paths, 78

Minimax and Maximin, 80

Transitive Closure, 80

Area of Polygon, 126

Array / Vector, 15

Articulation Points, 62

Backtracking, 27

Bellman Ford’s, 76

Bellman, Richard, 76

BigInteger, see Java BigInteger Class

Binary Search, 32

Binary Search Tree, 16

Bioinformatics, see String Processing

Bisection Method, 33

bitset, 96

Breadth First Search, 67

Bridges, 62

Brute Force, 26

CCW Test, 126

Combinatorics, 105

Competitive Programming, 1

Complete Search, 26

Computational Geometry, see Geometry

Connected Components, 60

Convex Hull, 128

Cut Edge, see Bridges

Cut Vertex, see Articulation Points

Cycle-Finding, 106

Data Structures, 14

Decomposition, 38

Depth First Search, 58

Dijkstra’s, 74

Dijkstra, Edsger Wybe, 74

Diophantus of Alexandria, 99

Direct Addressing Table, 17

Divide and Conquer, 32

Dynamic Programming, 40

Edit Distance, 112

Edmonds Karp’s, 82

Edmonds, Jack, 82

Eratosthenes of Cyrene, 95

Euclid Algorithm, 98

Extended Euclid, 99

Euclid of Alexandria, 98

Euler’s Phi, see Euler’s Totient

Euler’s Totient, 98

Euler, Leonhard, 98

Factorial, 101

Fibonacci Numbers, 101

Fibonacci, Leonardo, 101

Flood Fill, 61

Floyd Warshall’s, 78

Floyd, Robert W, 78

Ford Fulkerson’s, 81

Ford Jr, Lester Randolph, 76, 81

Fulkerson, Delbert Ray, 81

Gaussian Elimination, 108

Geometry, 120

Graham’s Scan, 128

Graham, Ronald, 128

Graph, 58

Data Structure, 18

Greatest Common Divisor, 98

Greedy Algorithm, 35

Hash Table, 17

Heap, 16

Heron of Alexandria, 123

Heron’s Formula, 123

ICPC, 1

Intersection Problems, 130

138

INDEX c© Steven & Felix, NUS

IOI, 1

Java BigInteger Class, 102

Base Number Conversion, 104

GCD, 103

modPow, 103

Karp, Richard, 82

Kruskal’s, 70

Kruskal, Joseph Bernard, 70

Law of Cosines, 123

Law of Sines, 123

Least Common Multiple, 98

Left-Turn Test, see CCW Test

Libraries, 14

Linear Algebra, 108

Linear Diophantine Equation, 99

Linked List, 15

Live Archive, 10

Longest Common Subsequence, 113

Longest Common Substring, 115

Lowest Common Ancestor, 86

Manber, Udi, 116

Mathematics, 93

Max Flow, 81

Max Edge-Disjoint Paths, 84

Max Flow with Vertex Capacities, 84

Max Independent Paths, 84

Min Cost (Max) Flow, 85

Min Cut, 83

Multi-source Multi-sink Max Flow, 83

Minimum Spanning Tree, 70

‘Maximum’ Spanning Tree, 71

Minimum Spanning ‘Forest’, 72

Partial ‘Minimum’ Spanning Tree, 72

Second Best Spanning Tree, 72

Modulo Arithmetic, 100

Myers, Gene, 116

Network Flow, see Max Flow

Number System, 107

Number Theory, 94

Palindrome, 113

Pick’s Theorem, 127

Pick, Georg Alexander, 127

Prime Numbers, 94

Primality Testing, 95

Prime Factors, 96

Sieve of Eratosthenes, 95

Probability Theory, 108

Pythagorean Theorem, 123

Pythagorean Triple, 123

Queue, 15

Range Minimum Query, 22

Segment Tree, 22

Sequences, 107

Single-Source Shortest Paths

Detecting Negative Cycle, 76

Negative Weight, 75

Unweighted, 68

Weighted, 74

Special Graphs, 85

Bipartite Graph, 89

Max Cardinality Bipartite Matching, 89

Max Weighted Independent Set, 90

Directed Acyclic Graph, 87

Longest Paths, 87

Min Path Cover, 87

SSSP, 87

Tree, 86

APSP, 86

Articulation Points and Bridges, 86

Diameter of Tree, 86

Max Weighted Independent Set, 86

SSSP, 86

Stack, 15

String Alignment, 112

String Matching, 111

String Processing, 110

String Searching, see String Matching

Strongly Connected Components, 65

Suffix Array, 116

Suffix Tree, 114

Applications

Exact String Matching, 115

139

INDEX c© Steven & Felix, NUS

Longest Common Substring, 115

Longest Repeated Substring, 115

Tarjan, Robert Endre, 63, 65

TopCoder, 10

Topological Sort, 66

Union-Find Disjoint Sets, 19

USACO, 10

UVa, 10

Warshall, Stephen, 78, 80

140

