
LCA and some other 
topics on tree

Ran Xiao
The Affiliated High School of Peking University
2020.5
xiaoran@i.pkuschool.edu.cn

mailto:xiaoran@i.pkuschool.edu.cn


Contents
• 1. Lowest Common Ancestor
▫ concept
▫ binary lifting method
▫ other methods

• 2. Some other tricks on tree
▫ difference array & partial sum on tree
▫ in-out difference on tree

• 3. Tasks
2020/6/8

2



Notes
• u,v: vertex/node on tree
• rt: the root of the tree
• fa(u): the father of u
• son(u): sons of u
• sub(u): all vertex in subtree of u (include u)
• path(u,v): all vertex on the simple path from u to v
• anc(u) : all vertex v∈path(u,rt) (include u)
• lca(u,v): lowest common ancestor of u and v
• dist(u,v): number of edges in the path from u to v

• dep[u] = dist(u,rt) + 1
• dfn[u] = the dfs order of u
• anc[u][i] = the 2i ancestor of u

2020/6/8

3



Lowest Common Ancestor
1. concept

2. binary lifting method

3. other methods

2020/6/8

4



Lowest Common Ancestor(lca)
• Given a rooted tree and 2
nodes u and v:
▫ anc(u)

 all vertexs v∈path(u,rt)
▫ Common Ancestors of (u,v)

 intersection of anc(u) and
anc(v)

▫ lca(u,v)
 the vertex with the maximum
depth among all the common
ancestors of (u,v)

5

1

3

2

5

6

7

dep = 1

dep = 2

dep = 3

dep = 4

dep = 5

4

8

9

dep = 6

dep = 7

anc(4) = {1,2,3,4}
anc(9) = {1,2,5,6,7,8,9}
common anc. of (4,9) = {1,2}
lca(4,9) = 2[SPOJ] LCA：https://www.spoj.com/problems/LCA/

https://www.spoj.com/problems/LCA/


binary lifting method
• Pre-processing in O(nlogn)
• anc[u][i] = the 2i-th ancestor of u

▫ anc[u][0] = fa[u]
▫ anc[u][i] = anc[anc[u][i-1]][i-1]

• DP: anc[v][·] for all v ∈ anc(u) must be known
before calculating anc[u][·] -> dfs order

• These information allow us to jump from u to any
v∈anc(u) in O(logn) time.

2020/6/8

6

u

a

b

anc[u][i-1]

anc[u][i]

2i-1

2i-12i



binary lifting method
• step1: jump to same level
• step2: check if u and v on same chain
• step3: jump simultaneously to the nearest level
under lca

7

1

3

2

5

6

7

dep = 1

dep = 2

dep = 3

dep = 4

dep = 5

4

8

9

dep = 6

dep = 7

1

3

2

5

6

7

dep = 1

dep = 2

dep = 3

dep = 4

dep = 5

4

8

9

dep = 6

dep = 7

1

3

2

5

6

7

dep = 1

dep = 2

dep = 3

dep = 4

dep = 5

4

8

9

dep = 6

dep = 7

step1 step3



step1

2020/6/8

8

1

3

2

5

6

7

dep = 1 ×

dep = 2 ×

dep = 3 ×

dep = 4 √

dep = 5 √

4

8

9

dep = 6 √

dep = 7

• v = 4, dep[v] = 4

• u = 9, dep[u] = 9

• j = 1:

▫ anc[u][1] = 7, dep[7] = 5

▫ check dep[anc[u][j]]>=dep[v] -> √

▫ u = anc[u][1] = 7

• j = 0:

▫ anc[u][0] = 6, dep[6] = 4

▫ check dep[anc[u][j]]>=dep[v] -> √

▫ u = anc[u][0] = 6

×/√ dep[anc[u][j]]>=dep[v]

j = 1

j = 0



step3

• v = 4

• u = 6

• j = 0:

▫ anc[u][0] = 5

▫ check anc[u][j]!=anc[v][j] -> √

▫ u = anc[u][0] = 5

• lca = anc[u][0] = anc[v][0] = 2

2020/6/8

9

1

3

2

5

6

7

dep = 1 ×

dep = 2 ×

dep = 3 √

dep = 4

dep = 5

4

8

9

dep = 6

dep = 7

×/√ anc[u][j]!=anc[v][j]

j = 0



binary lifting method - code

2020/6/8

10

1

3

2

5

6

7

dep = 1 ×

dep = 2 ×

dep = 3 ×

dep = 4 √

dep = 5 √

4

8

9

dep = 6 √

dep = 7 √

Why need step2?



LCA - Other methods
• Heavy-Light Decomposition

▫ any path can be decomposed to ~log(N) heavy chains
▫ O(n)-O(logn)

• Reduction to RMQ
▫ Euler Tour: write down the depth while each time you enter a vertex,

total len = 2(n-1)
▫ lca(u,v) = minimum element in interval [first[u], first[v]]

 where first[u] is the position of first occurrence of u in Euler Tour
▫ Sparse Table: O(nlogn)-O(1)
▫ Restricted(+/-1) RMQ: so-called Farach-Colton and Bender Algorithm[2],

O(n)-O(1)

• Tarjan’s Algorithm[1]
▫ offline
▫ Dfs and DSU
▫ O(nα(n))

2020/6/8

11

[1] Dov Harel, Robert Endre Tarjan, Fast Algorithms for Finding Nearest Common Ancestors, SIAM J. Comput. 13(2): 338-355 (1984)

[2] Michael A. Bender, Martin Farach-Colton, The LCA Problem Revisited, LATIN 2000: 88-94



Some other tricks on tree
1. difference array & partial sum on tree

2. in-out difference on tree

2020/6/8

12



difference array & partial sum

• Problem:
▫ giving a tree with weight on vertex
a[1…n](intially all zero), m updates:
 (u v x): add x on path(u,v)

▫ output the a[u] after all queries

▫ n = number of vertex
▫ m = number of query
▫ n,m ~ 1e5
▫ offline/online

2020/6/8

13



difference array & partial sum
• define the difference array on tree:

▫ d[u] = a[u] – Σa[son(u)]
• adding x on path(u,v) can be decomposed

by adding on 2 chains:
▫ add x on path(u,z), where z = lca(u,v)
▫ add x on path(v,y), where y is both son(z)

and anc(v)
• add x on chain(u,z), where z∈anc(u)

 d[u] += x
 d[fa[z]] -= x

• ask a[u]
 a[u] = Σd[sub(u)]

14

1

3

2

5

6

7

4

8

9

u

v

z = lca(u,v)

y

fa[z]

difference array on sequence on tree

definition d[1] = a[1]
d[i] = a[i] – a[i-1]

d[leaf] = a[leaf]
d[i] = a[i] – Σa[son(i)]

query a[i] a[i] = Σd[1…i] a[i] = Σd[sub(i)]



• offline: O(nlogn)

update d[] in O(logn) time per query,
dfs traversal processing sum for all
subtrees

15

• online: O(nlogn)

the dfs order of sub(u) form a continuous interval,
use a BIT with range sum function



in-out difference on tree
• Problem:

▫ giving a rooted tree, vertex is
white or black. m queries:
 query(u,k): output the number of black
vertex v∈sub(u) and dist(u,v)=k

▫ n = number of vertex

▫ m = number of query

▫ n,m ~ 1e5

▫ Offline/online

2020/6/8

16

1

3

2

57

4

8

9

query(2,1) = 2

two constrains:
1. v∈sub(u)
2. dep[v] = dep[u] + k



in-out difference on tree
• Run dfs traversal and maintain a

bucket array buc[1…n] for each depth.
Each time entering a black vertex v,
record it in buc[dep[v]].

• query(u,k): check buc[dep[u]+k]
whenever you enter as well as leave u,
the difference is affected only by
those black vertex in sub(u).
▫ enter u: ans0 = buc[dep[u]+k]
▫ leave u: ans1 = buc[dep[u]+k]
▫ ans[u] = ans1 – ans0

• O(n)

• online?
▫ persistent segment tree

17

1

3

2

57

4

8

9

1

0

1

0

buc

1

3

2

57

4

8

9

1

0

3

1

query(2,1) = 3 – 1 = 2

{9}

{9,7,5}



War Story: Tiantian loves running
• NOIP2016 Day1T2

• Giving a tree with n vertex. m runners run from s[i] to
t[i](i=1…m). All runners depart at t=0 and run at the
speed of 1 edge per second.

• n observers at each node with observation time
W[j](j=1…n). The observer j will recode the number of
runners that just happened to reach j at t = W[j].

• Output the answer for each observer.

• n,m = 3e5

2020/6/8

18

[loj2359] Tiantian loves running
https://loj.ac/problem/2359

https://loj.ac/problem/2359


War Story: Tiantian loves running
• A runner from s to t can be decomposed into 2

runners:
▫ a up-runner runs from s to z = lca(u,v)

▫ a down-runner runs from y to t, where y is both son(z) and
anc(t)

• For observer j with w[j]:
▫ a up-runner i can be recorded if:

 s[i]∈sub(j) and t[i]∉sub(j)

 dep[s[i]] – dep[j] = w[j]

 add i to buc[dep[s[i]]] when enter s[i]

 query j at buc[w[j]+dep[j]]

 reomve i from buc when leave z

▫ a down-runner i can be recorded if:

 s[i]∉sub(j) and t[i]∈sub(j)

 dist(s[i],t[i]) – (dep[t[i]] – dep[j]) = w[j]

 add i to buc[dist(s[i],t[i]) - dep[t[i]]] when enter s[i]

 query j at buc[w[j] - dep[j]]

 reomve i from buc when leave y

• use in-out difference on tree: O(nlogn), O(n) if
using O(n) lca

2020/6/8

19

1

3

2

5

6

7

4

8

9

s

t

up-runner

down-runner

y

s s

w[j]

j

t t

dist(s,t) - w[j]

j

up-runner down-runner



Tasks

2020/6/8

20



• Task 1-3
lca(1,4) = ?

▫ A. 1
▫ B. 2
▫ C. 3
▫ D. 4

lca(3,5) = ?
▫ A. 2
▫ B. 1
▫ C. 3
▫ D. 5

lca(2,9) = ?
▫ A. 1
▫ B. 2
▫ C. 5
▫ D. 6

2020/6/8

21

1

3

2

5

6

7

dep = 1

dep = 2

dep = 3

dep = 4

dep = 5

4

8

9

dep = 6

dep = 7



• Task 4-7
anc[9][0] = ?

▫ A. 9
▫ B. 8
▫ C. 7
▫ D. 6

anc[9][1] = ?
▫ A. 9
▫ B. 8
▫ C. 7
▫ D. 6

anc[9][2] = ?
▫ A. 1
▫ B. 2
▫ C. 5
▫ D. 6

anc[9][3] = ?
▫ A. 0
▫ B. 1
▫ C. 5
▫ D. 6

2020/6/8

22

1

3

2

5

6

7

dep = 1

dep = 2

dep = 3

dep = 4

dep = 5

4

8

9

dep = 6

dep = 7



• Task 8

In lca problem, what is the time complexity of: binary
lifting, RMQ(Sparse table), and Tarjan’s method:

▫ A. O(nlogn)-O(logn), O(nlogn)-O(1), O(nα(n))

▫ B. O(nlogn)-O(1), O(nlogn)-O(logn), O(nα(n))

▫ C. O(nlogn)-O(1), O(nlogn)-O(1), O(n)

▫ C. O(nlogn)-O(logn), O(nlogn)-O(logn), O(n)

• Task 9

What strategies/ideas are used in binary lifting method
(select 2 options):

▫ A. Greedy

▫ B. Dynamic Programming

▫ C. Divide and Conquer(Binary search)

▫ C. Brute Force 2020/6/8

23



• Task 10
In order to get faster, which
if-statement can be put on “?”:

▫ A. if(dep[u] <= (1<<j)) continue;
▫ B. if(dep[u] < (1<<j)) continue;
▫ A. if(dep[u] <= j) continue;
▫ B. if(dep[u] < j) continue;

• Task 11
Giving a rooted tree with black/white vertex, query(u,k):
output the number of black vertex v∈sub(u) and dist(u,v)=k.
(same problem on page 16)
If you use persisitent segment tree to solve the online
version of this problem, what is the time and space
complexity?

▫ A. O(nlogn), O(n)
▫ B. O(n), O(n)
▫ C. O(nlog2n), O(nlogn)
▫ A. O(nlogn), O(nlogn) 2020/6/8

24



• Task 12
Try to hack the program using binary
lifting method with dep[rt]=0.
Construct a set of input(u,v) to
make the program go wrong.

▫ A. u=3, v=5

▫ B. u=1, v=5

▫ C. u=2, v=5

▫ D. u=4, v=3

2020/6/8

25

1

3

2

5

6

7

dep = 0

dep = 1

dep = 2

dep = 3

dep = 4

4

8

9

dep = 5

dep = 6



• Task 13

• Using the difference array
d[], after +1 operation on
path(4,5), the d[1-5] will
become:
▫ A. [0,0,0,1,1]

▫ B. [-1,-1,0,1,1]

▫ C. [0,-2,0,1,1]

▫ D. [-2,0,0,1,1]

2020/6/8

26

1

3

2

5

4

u

v

lca

fa[lca]



• Answer for task 1-13
▫ A/A/B
▫ B/C/C/A
▫ A/BC
▫ A/D
▫ B
▫ B

• Task 14-20
▫ [SPOJ] LCA

 https://www.spoj.com/problems/LCA/

▫ [CF191C] Fools and Roads
 https://codeforces.com/problemset/problem/191/C

▫ [loj2359] Tiantian loves running
 https://loj.ac/problem/2359

▫ [CF980E] The Number Games
▫ [CF519E] A and B and Lecture Rooms
▫ [CF832D] Misha, Grisha and Underground
▫ [CF1110F] Nearest Leaf
▫ [CF1076E] Vasya and a Tree
▫ [CF739B] Alyona and a tree

2020/6/8

27

https://www.spoj.com/problems/LCA/
https://codeforces.com/problemset/problem/191/C
https://loj.ac/problem/2359

