[bookmark: _GoBack]ANALYSIS OF PROLEM RAIN AGAIN



Let’s observe the possible solutions. Unlike most of my other tasks, here even the simplest solutions are not that simple. First, we will modify the way in which we present the task in an equivalent, but it is easier to implement:
1. Instead of falling drops (points) will be falling rectangles size W x H and center coordinates of the point.
2. Instead of asking for no rectangle of size W of H, which contains a point, we will want to have an uncovered point from the falling rectangles.
3. To be equivalent to the original task, we need to "cover" W/2 inward from the vertical walls and H/2 inwards from the horizontal walls of the pot.
If you think a little, you will see that this is actually equivalent. Perhaps closer to human intuition will be if the pot was a circle with radius R and the subintervals we want to have no point in were circles with a radius r. So if we make the radius of the pot R-r, the points make circles with radius r, and the circles - points, the task will be to have an uncovered point in the pot. 

Once we have changed the task in this way, the easiest thing we can do is simulate the drops falling (already rectangles) and keep track of when each point in the pot is covered. Because the limitations are relatively large, it will only work for about 7 of the 25 tests, that is, it will get about 30 points.
 
Let's take a random point of it out of the pot until there is an uncovered space in the pot, and start moving it down and to the right as far as the walls of rectangles or the ends of the pot. As long as this point is not covered, there are more drops (rectangles) to fall. If, after being covered, there is still uncovered space, we again apply the same procedure, finding a corner point there.

Of course, checking whether there is empty space and finding a corner point is not particularly trivial. That is why we will make life easier and we will not do it. Instead, we will take all of these potential points and watch when they get covered.
In fact, these points are not so much. They are either an intersection of two rectangles or a rectangle with a pot on the bottom or the bottom left corner of the pot. (Even we can half the number of such points, if we if we find that we are only interested in the upper and right walls of the rectangles.). Again we will simulate, but this time when dropping a rectangle we will look at which of the uncovered "special" points it covers. At the moment when there is no uncovered "special" dot we know that we are ready (this is the last drop we need).
The number of possible points is about O (N * N), and for each such point we have to iterate all N rectangles, that is, this solution is of complexity O (N ^ 3) . In practice, however, if implemented well except for very specific tests, it behaves like O (N ^ 2) and would capture nearly 50% of the points.

Okay, let's take a look at the faster algorithms. For them, we can even consider drops as dots, and the rectangle as a rectangle - as is the description of the task.
 
Some contestants immediately thought of doing a binary search on the answer . Even with it, however, it is not easy to check whether or not there is a rectangle of WxH from among the points. Well, there is a relatively standard, albeit not very simple, algorithm for this - the so-called "sweep line".

In short, the solution is as follows:
1. Binary search fixes a number K.
2. We sort the first K points.
3. We begin to move a vertical line along X (the "sweeping line").
4. Each point (Xi, Yi) to the right of having Xi-W < X actually “hinders” an empty rectangle between the sweep line and that point (more precisely between the Yi-H and Yi+H coordinates along the line).
5. If nowhere along the line there can be a rectangle, we can move the line to the next X.
6. If X + W> L there can’t be an empty rectangle any longer and we say that the first K points are enough for the pot to be wet.
7. If after all K points still X + W <= L, we have to move the left border of the binary search to K + 1.
The sweeping line itself can be realized in several ways, the most straight-forward of which is to use an indexed or interval tree. However, this would be superfluous, as it could be done with much less code. We can use map that stores in which Y how many points are there and a counter for how many intervals greater than H are in the line. 
 
This solution is O (N * log * log) because we have one log for the binary search and O ( N * log) inside it for the sweeping line . The sweep line itself is O (N * log) since we need to sort the points and then O ( logN ) to maintain the points on the line . However, this solution will not get the full score, but about 60-70%.
 
How can we make the solution even faster? With a smart (but not very complex) trick, we can get rid of binary search. Rather than fix the first K points and sorts them we will take them in the order they are given to us, and if they are too far from the sweeping line we will insert them in a priority queue. When we move the line, we will pop from the priority queue the points with the smallest X and will use a similar approach to what we did in the previous paragraphs. Since each point get in and out from the priority queue most at once, then we have complexity O (N * logN ). The sweep line itself is also O (N * logN ). Since operations with the priority queue are independent of the line update of the sweep line, the whole solution is O (N * logN ).
Author: Alexander Georgiev
