ANALYSIS OF PROBLEM TOWERS
One tower solutions
The basis of all solutions is to place all possible places to become buildings that will receive messages. The place where the tower is placed, which is defined by the expression "immediately after a building with a number m", is determined by the building in another building with the building number and + 1 or a building with the number N is placed before the first building that the number of buildings receiving messages from it will be 0.
Naïve solution with complexity O(N2)
	Let's imagine we put the tower right after building m. We will count the buildings that will receive a message from it, moving along the tower line to building number 1. It is clear that the movement must continue either as we pass through all the buildings or while we meet a building higher than the tower, no building will receive a signal. The other thing to keep in mind is that the buildings that receive the signal will be placed in a row of their heights in this way of crawling (from the tower to the first building). This gives us reason to count as follows: We maintain a variable in which we keep the current maximum of the heights of the crawled buildings. Whenever this maximum is changed, that is, we encounter a building higher than the previous highest building we increment the counter.
By changing m from 1 to N and counting each time the number of buildings that will receive messages at the tower position, immediately after a building with a number m, we can easily find the maximum number of buildings that will receive messages at the appropriate tower location.
Since each traversal from tower to building 1 or higher to tower building has complexity O(m) and since m is going from 1 to N, then the overall complexity of the algorithm is O(N2).
	The next solution that we will look at has also O(N2) complexity, but, as we shall see, uses an idea that will later lead us to a linear solution in the case of a tower.
O(N2) solution that uses a stack
	Again, we imagine that we have placed the tower just after building m. This time we will count the buildings that will receive its messages, starting from the first building and moving sequentially to a building with a number m. We will say that a building with number j covers a building with the number i (j> i) if hj> hi and between them there is no building that is higher than the building with number i. In the light of this definition, our task is to find the maximum number of buildings the tower can cover when choosing the right position.
The idea of this solution is, starting from the beginning of the row of buildings and moving to the tower, constantly monitoring which buildings are already covered by another building - it is clear that they can not be covered by the tower and receive messages from it. When we get to the tower, we want to have a list of crawled buildings that are not yet covered, arranged in ascending order of their heights. Then the tower will be able to cover those of them that are less than its height.

In order to realize this idea, we will use a stack in which the heights of those buildings that are not yet covered by another building will be at any moment of the traversal. The heights in the stack will be in ascending order starting from the bottom, as will be clear from the following sentences. Let's get to building j. Consequently, we remove from the top of the stack all buildings (namely their heights) with a height smaller than that of building number j - they will be covered by building number j and can not receive messages from the tower. Once we reach a building at the top of the stack at a height higher than that of building j or the bottom of the stack, we add the height of a building with the number j at the top of the stack.
Let's remind you that we have placed the tower just after building m. Then we iterate the buildings from number 1 to number m, performing the operations described with the stack. Once we add the height of building number m in the stack, we are ready to count how many buildings will cover the tower, ie. how many buildings will receive its messages. To do so, we remove all the heights smaller than the height of the tower from the top of the stack (remind them that they are sorted in ascending order from the top to the bottom), adding each unit to the counter of the tower-covered buildings.
By changing m from 1 to N and counting each time the number of buildings that will receive messages at the tower position, immediately after a building with a number m, we can easily find the maximum number of buildings that will receive messages at the appropriate tower location.
Since finding the number of covered buildings at each m is of complexity O (m) and since m takes values from 1 to N, then the overall complexity of the algorithm is O(N2). Although the complexity of this solution is the same as the previous one, it is good in that it allows for improvement to a linear solution.
O(N) Solution
In order to reach a linear solution, we need to better imagine how the idea works by using a stack. The key here is the question: "should we for every position of the tower, immediately after a building with a number m , when m is changed from 1 to N , let's start from the beginning the calculation of the number of buildings that are covered by the tower, i.e. will receive messages from her? ". Let's imagine we have a Lc counter of the buildings covered by the tower. How will changes its value when you move the tower to a position at the end of the row of buildings and it stands directly behind the building with a number m. By processing a building with a number m, we first pop from the stack consecutively those buildings that are smaller than it - they will be covered by this building and will become inaccessible to the signals from the tower. If there are buildings between them that are less than the height of the tower, they have been counted at some point when entering the stack, such as the tower that will be covered if it is placed immediately behind them (see next paragraph). So for every building lower than the tower, which is removed from the stack, because it will be covered by building m, you can reduce Lc with 1.
The last thing we need to consider is, if the building with the number m is lower than the tower, then Lc will increase by 1 at the moment we put the height in the stack, as the tower will cover it (between it and the building with the number m no other buildings).
These considerations lead to an algorithm in which Lc is counted as soon as the tower is moved one position closer to the end of the row of buildings. The newly calculated value of Lc should be compared to the current maximum found on this counter and, if larger, to change the current maximum. When the tower goes through all possible positions, the current maximum will give the answer to the task. Change in the value of Lc can occur when the height of a building is inserted or removed from the stack. Since the height of each building is inserted into the stack exactly once and extracted from the stack at most once, then this algorithm has a complexity of O(N) .
Now let's move on to explaining solutions for more than one tower.
Solutions for K towers
The easiest way to solve the K problem towers is to solve it K times for each tower separately. Depending on which of the above algorithms to solve the problem of a tower use will get solutions with complexity O (K * N 2) and O (K * N). The first will cover 20 percent of those tests, where N ≤ 1000, K ≤ 20 and will bring 20 points. The second will cover these 20% and another 30% of the tests in which N ≤ 1 000 000, K ≤ 20 and will bring 50 points.
In order to solve the problem more effectively, let us reconsider the stack we used in the above solutions. We will say that a building is in the stack if its height is in the stack. At any moment a building that is located in the stack is "cluttered" of other buildings (you and zero in number) that are larger numbers of it (located to the right of it in terms of buildings) have more a small height from it and are arranged in ascending order of their heights, starting from the top of the stack and reaching it. Let Measuring "overwhelmed" of a building in the stack at a time of processing the row of buildings, with the number of buildings it the "overwhelmed" at this point +1 (for itself). This value is constantly changing. Let's explain this with an example: let's have buildings with heights of 20, 10, 15, 8 and 17.

20	 10	 15	 8	17

Lets trace how the stack and heap of each building in it are changed .
State of the stack
	1
	2
	3
	4
	5
	6

	празен
	20
	10
20
	15
20
	8
15
20
	17
20

„Coverage“ of the buildings
	 State of
stack
Building height
	
1
	
2
	
3
	
4
	
5
	
6

	20
	0
	1
	2
	2
	3
	2

	10
	0
	0
	1
	0
	0
	0

	15
	0
	0
	0
	1
	2
	0

	8
	0
	0
	0
	0
	1
	0

	17
	0
	0
	0
	0
	0
	1

Let's now have a tower of height h. Looking at the table of "coverage" of buildings, we can formulate the following statement: the maximum number of buildings that will receive messages from a tower of height h , at its optimum location, is equal to the maximum "coverage" that occurs for a building lower than the tower, i. e. building with a height less than h .
In the example we look at (buildings are identified with their heights):
	h
	Max number of buildings receiving messages
	After which building is the tower
	Which buildings receive messages

	21
	3
	8
	8, 15, 20

	16
	2
	8
	8,15

	19
	2
	8
	8,15

	11
	1
	10
	10

So, we need a structure in which to store the stack conditions throughout the processing of the row of buildings, a quick way to calculate the maximum " coverages" of buildings and a quick way for each tower to identify a building that is lower than it and has the highest maximum "coverage".
Suitable for this purpose is a persistent stack, which is realized with a tree describing all the states of the stack. In the push operation is realized by adding leaf on top, where the pointer is located and pop operation - by moving the pointer to the parent of the element which is poped. The tree has an artificial root - if the pointer points to it, it means that the stack is now empty. Here's how the tree changes through which the persistent stack is implemented for the above example:
Empty stack	 push(20) push(10) pop(10) push(15)		push(8)0
15
10
200

0
0
0
0
0

10
200
10
200
200
200

15
10

8

pop(8)			 pop(15)		 push(17)
0

0
0
200
10
15
8

200
10
15
8

200

8
15
10

17

When all the buildings are processed, we get a tree, whereby we can determine the maximum "coverage" of each building - that is the number of nodes on the path from the top of the tree depicting the building to the farthest from it (including the top of the building and the leaf). In the above example of a building with a height of 20 this number is 3, for a building with a height of 15 - 2, etc.
This tree is being built on time O(N), since each building enters the stack exactly once and out of it more than one time.
In such a structure, the maximum "coverage" for all buildings is calculated by traversing in depth of the tree for time O(N).

It is now for each tower to take the largest "coverage" of the maximum coverages of all the buildings that are lower than it. To do this, we sort buildings and towers in ascending order by their height (complexity O (N * logN) + O (K * logK)).
Let for every building in some field, eg. score , we have recorded the maximum “coverage” found for it. If we look for the maximum score for each tower for buildings lower than it, we will go to complexity O (N * K) , which is bad. This can be avoided, by linearly, for each building, in a score we record the largest maximum “coverage” that has encountered up to it (including the building itself). Then we make an asynchronous linear traversal of the two ordered tower towers and buildings and for each tower the answer is in score on the last, lower than the building. The complexity of the solution is O (N * logN) + O (K * logK) .

[bookmark: _GoBack]Author: Rusko Shikov
