[bookmark: _GoBack]ANALSYS OF PROBLEM WINDOW

It is straightforward to note that the length of the window must be an even number - otherwise it is not possible to place an exact number of bricks in the square.

O(N4) solution
	This is the naive solution that generates all possible squares with an upper left corner in each square and an even length of the side and checks if any of the sides of the generated square does cut in half a brick. If it does not, such an answer satisfies the task conditions, then we compare the length of its country with the currently found maximum side, and so on. Here, it is only necessary to limit the loops to squares that are possible for an upper left corner of a square that does not touch the side of the wall and the permissible length of the side at an upper left corner.

O(N3) solution
	This solution works with points that are nodes in the network of squares on the wall. All horizontal and vertical segments that pass only on the sides of bricks without braking are considered. Such a segment will be called maximal if it cannot be extended to the left or right (horizontal) or down or up (vertical) without breaking a brick or coming out of the wall. The idea is that we look at every two rows of points, which have an even number of squares (even square lengths) and for them we are looking for continuous vertical segments that cross them, the distance between them is the same as the distance between the rows and between the intersections of the vertical segments with each of the two rows lie continuous horizontal segments. To do this, we must be able to answer two questions quickly: given two points on same horizontal level, do they lie on a horizontal line; given two points on the same vertical level do they lie on a vertical line. This can be achieved by numbering all maximum horizontal segments with numbers from 1 to their number and all maximum vertical segments with numbers from 1 to their number. For each point we store the maximum horizontal segment number and the maximum vertical segment number to which it belongs (the authors use two two-dimensional arrays - hl [i] [j] contains the number of the max horizontal segment on which the point lies with coordinates (i, j), and vl [i] [j] - the number of the corresponding maximum vertical segment). This numbering makes it possible to quickly answer the question - can four points that are square vertices be the vertices of a window: it can if the upper two points lie on the same segment. (i.e. they have the same values for them in the hl array) and the lower two are the same max. a horizontal line, and the left two lie at the same max. (ie they have the same values in the array v1), and the right two are the same max. vertical segment.
So, taking two rows equidistantly between them, we begin to cycle from left to right and make squares with the corresponding left side and right side, equal to the ladder on the left + the distance between the two rows. For each of them we check whether it is going through the window as described above.

O(N2logN) solution
	In this solution, again we use the points that are nodes in the network of squares on the wall. The maximum horizontal and vertical segments, as well as the arrays hl and vl from the previous solution, are also used. There are also arrays hlbeg, hlend, vlbeg and vlend, in which for each index of a maximum segment are stored the beginning and the end. Looking at the points as potential candidates for the top, left corner of a frame, we traverse them along diagonals (main diagonal and the parallel to it) from left to right and top to bottom. When we are at a particular point, we define the right-most horizontal point, which may be the upper right corner of a square (it is at a distance, equal to the smaller of the two lengths - from the point to the right edge of the max the horizontal section on which it lies and from the point to the lower end the maximum vertical distance to which it lies. We will say that the point we are looking at "covers" all the points of the diagonal we are moving that fall below the specified horizontal segment. We will say that one point of the diagonal is still active if, while moving along the diagonal, we have not yet come out of the area it covers.

	And so, when moving along each diagonal we will maintain a structure with the active points of it - these are the points for which there is still a chance to find an upper left corner of a square suitable for an opening. This structure will be a heap, at the top of which will be the point that covers the leftmost column (in the program realization a priority queue is used). Besides this, we will also maintain a structure with the numbers of the active points (the numbers are determined by the order we are going through the diagonals). What is this structure and what it serves will become clear in a moment. So, let's during our traversal we are at point number k of the diagonal (the first point of the diagonal has the number 1, the second with the number 2, etc.). Naturally, with this number (and the diagonal we are at), we can easily determine the row and column on which the point is located. In this case we are interested in a column. By its number, we can determine which of the already visited diagonal points become inactive and take them out of the priority queue and from the structure with the active point numbers. Note that after this operation, only the points that cover the subject are left in the priority queue. Then we specify a square with what maximum side the lower left corner of the point you are viewing and what is the number (from the diagonal traversal) to the point that would be the upper right corner. And in the structure with the active point numbers we look for the first point that is no less than the specified number. If there is such a point, it will be the upper left corner and the one we’re considering will be a lower right. We calculate the side and proceed in the usual way with the current maximum. What should be the structure of the active point numbers so that we can binary answer to the question - which is the first number in the structure, no less than a given number. Additionally, we must be able to add and remove elements with the log complexity. Such a structure is a balanced binary search tree, and it is best to use a STL set.
	So every point (almost any, because those that can not be upper left corner of a square have nothing to do there) from the diagonal will enter and exit once from the priority queue and enter and come out in the balanced tree with the numbers. For each diagonal, begin with an empty priority queue and a balanced tree and in one diagonal O (N) elements. Then we end up with an algorithm of complexity O(N2logN).

Authors: Rusko Shikov, Yardan Chapurov, Georgi Georgiev, Iskren Chernev
		
