ANALYSIS OF THE TASK SOLUTION
ANTS

Under the condition, we can imagine the objects in the task as the root tree (the multitude of cities), in which each city represents a node in the tree (numbered 1 through N) and for each vertex - an ordered set of numbers numbered 1 through M (the ants in each city). The root of the tree will be the first node and the parent of the city X in the tree will be the city from which the ants have moved to the city of X.
For this analysis, we first facilitate the task by making sure the parent of node x > 1 to be the node (x-1). Then we can narrow the problem down to the following: for a given array of M numbers we use N-1 times a couple of tasks: "increase the number in the interval [L:P] with V" and ”what is the sum of the numbers from i to j". To solve a problem with a complexity suitable for the time limit of the problem, you must use a fast data structure. The author's solution uses the segment tree. This tree with ~ 2M nodes, which allows any of the operations (increase and sum account), to accomplish with the complexity O(LogM). 
The tree is called interval because each node in it holds the answer to the problem for a given interval of consecutive array elements (anthills). Is a binary tree with two successor to each retain the peak response in accordance with the interval of its parent. In particular, if the node contains the answer to the interval [L:P], then one heir contains the answer [L, (L+P)/2], and the other for (L + P)/2:P] (integer division). 
In a particular problem, each vertex of the interval tree (responsible for the interval [L:R]) will contain two numbers: sums and Incr. The sum will be equal to the sum of the numbers in this interval, ignoring all item increment operations that completely cover the interval. So well, if any operation increases the elements in the interval [L, R], will be ignored by this vertex if L1<L=P<P1. Incr will be the sum of all V, requests to increase the interval [L, R] that fulfill the condition: L1<=L<=R<=R1, and this condition is not met for any of the parents of R. This condition (I).
These values allow us to determine the following recursive dependences: if vertex P has two children Q and R, then P.sum = Q.sum + R.sum + (R-L+1) * P.incr. When we make a request to increase the elements defined by L1, P1, V1, we have to increase X. INCR with the current V1, for each X that meet the above state (I), and then applies a recursive dependency to / from all vertex on the path from X to the root of the tree.
To get the answer for a given interval i, j will define the following function f (i, j, node), where node is the vertex of the intersection tree with the child node (left) and the node (right):
If  <= node.L <= node.R<= J => f(i, j, node) = node.sum * allIncr where allIncr equal to the sum of all X.incr, for each Х on the path from the root to the node.
If i > node.R or L > j (i.e. node is not sown at the required interval) = > f (I, j, node) = 0,
otherwise => f(i,j, node) = f(i, j, node.Left) + f(i, j, node.Right).
So we have defined two requested operations and we can prove that the ones implementations are correct and both have complexity O(LogM) where M is the number of array elements.
Once we have solved this subproblem, we can use it to solve the random tree problem. To succeed, we will need to make our tree permanent. This means that at any time we need to access a tree that looks like it looked before each operation. So well, to be able to rewind “time back " and work with the interval tree corresponding to an array of numbers (anthills) as if a certain number of recent operations had not occurred.
Let's denote each such tree t(x) , where X is a vertex (city) from the source tree, and t(x) is a tree after we have applied two operations to the given vertex. T(1) is the initial moment that shows the size of the anthills at the root of our tree, T(2) is the moment in the interval tree after we did operations on vertex 2 for the city 2 and so on. That is, if we have two vertex X and Y for which vertex X is the father of vertex Y in the original cities tree, then the interval tree T(Y) will be the tree T(X), with two operations applied to vertex Y.



[bookmark: _GoBack]Since the complexity for each of the operations to change the array of numbers (anthills) through the interval the tree will be O(lgM), the number of vertices in the interval the tree T(X) other than the vertex in the interval the tree T(Y) will be proportional to the lgM. Also, thanks to how we defined recursive functions, this set will be connected (if we imagine that the connection of vertices in the interval tree is bidirectional).
This means that we can build a new tree T(Y) to accommodate the ability to modify T(X) for given vertices, create new connected vertices and vertices along the “front” (leaves and vertices with one child) on this set of “snaps” to their respective children in T(X).
The same strategy, for example, applies to the city / vertex Z, layered on mount Y. New vertices in the interval tree, we can “pump” for the vertex in the interval of the tree T(Y) and/or T(X).
So, for each query we will add new vertices by lgM, which leaves us a solution that uses O(NlgM) memory and has a time complexity of O(NlgM).
